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Abstract

A model of the large spatial distance, zero three-momentum, limit of QCD is
developed from the hypothesis that there is an infrared singularicy. Single
quarks and gluons do not propagate because they have infinite energy after re-
nermalization.  The Hamiltonian formulation of the path integral Is used to quan-
tize QCD with physical, non-propagating fields. Perturbation theory in the
infrared limit is simplified by the absence ol self ecmergy insertions and by the
suppression of large classes of diagrams due to vanishing propagators. Remaining
terms in the perturbation series are re-summed to produce a set of non-linear,
renormalizable integral equations which fix both the confining interaction and
the physical propagators. Seolutions demonstrate self consistency of the concepts
of an infrared singularity and non-propagating fields. The Wilson lecop is cal-
culated to provide a general proof of confinement. Bethe-Salpeter equations for
quark—antiquark pairs and for two gluons have finite energy solutions in the color
singlet channel. The choice of gauge is addressed in detail. Large classes ol
corrections to the model are discussed and shown to support self consistency.
Since all elements of QCD are retained, it is possible, in principle, to calcu-

late any hadronic amplitude.
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Although color confinement in Quantum Chromedynamics ((CD) has been estah-
lished in lattice calculationsl, there are still ambiguities in recovering the
continuum limif of the theory. Moreover, realistic lattice calcualtions of
physical quantities like bound state masses and weak interaction matrix elements
are intrinsically cumbersome. Massive amounts of computation are required and
tirere remain important questions about the best numerical techriques. In addi-
tion the results of lattice calculations carry statistical uncertainties. llence,
there is reason to complement the numerical analysis of QCD with analytic inves-—
tigations of models of the confinement process that are closely connected to
the continuum f£ield theory.

This paper presents a model of confinement in QCD. It is derived directly
from the equations of the field theory. Altnough quarks and gluons are initially
assumed to be confined and a particular interaction is ideantified as "important"
in the large distance limit, the full structure of the theory is retained. The
assumptions are justified a posteriori. Residual interactions are calculable
with well defined perturbation theory rules. The model developed here differs
from m:hers2 not only in mechanism but also in its reliance on the equarions of
QCD. One of the attractive features of the model is the absence of colored single
particle states. Yet it is possible to construct a Bethe-Salpeter equation for
finite energy, color singlet bound states., Even if this model does not embody
the "true'" confinement mechanism in QCD, it should be useful in the analysis of
important theoretical questions such as dynamical symmetry breaking. Morcover,
the technique used in constructing a mean field theory in the path integral frame-
work could prove useful In creating wider class of models.

Some of the results have appeared in a series of papers on the connection
between the 0CD vacuum and ConfinemenL.j_S The derivation 1s totally new. This
paper is sell contained., When there is overlap with earlier work, the discus-

sion is abbreviated.



The model of confincment is based on the observation that physical quarks
and physical{= transverse) gluons do not propagate in the non-perturbative
vacuum. The momentum space representations of single particle propagators do
not have peles. In the Coulomb gauge only the transverse degrees of freedom of
the gauge field are quantized. It is the natural gauge in which to explore the
conscquences of non—propagating quarks and gluons. The problems of the Coulumb
gatge are well known6 and are addressed below. Christ and Lee7 quantize {CB
in non-covariant gauges. The Coulomb gauge Hamiltonian is a function of phys-
ical [ields. 1t is used in a path integral to develop a mean field theory for
the QCD ywround state. Two variations on the conventional path integral ftoermalism
are introduced. Counterterms are added and subtracted to define an "unperturbed"
llamiltonian for gluons and quarks propagating in the physical vacuum. The
counterterms are fixed by the requirement that there are no quark and gluon self
energy insertions in the perturbation series. By hypothesis single particle
propagators in the physical vacuum do not have poles at finite energies. Sell
consistency requires that the calculated counterterms reproduce that property.

The second variation on path integral quantization involves use of the
Hamiltonian rather than Lagrangian formulation.8 Conventionally one integrates
out canonically conjugate momentum fields. The Faddeev-Popov determ.inant9 appears.
Chost fields are introduced to handle the explicit field dependence cf the de-
terminant. In the Coulomb gauge that determinant is known to have zeros. Here
the penerating function is calculated by coupling external sources to both the
pauge fields and their conjugate momenta. The unperturbed Hamiltenian is a
quadratic form. One derives propagators not only for particle fields but also
for the conjugate momenta. The interaction Hamiltonian is a function of both.
Phe momenta Tietds play the role of ghosts, but there is no Faddecv-lopov deter-
minant. Although the interaction Hamiltonian is guadratic in momentum [ields,
it is non-local and has terms of all orders in the ordinary fields. That compli-

cation is not a problem since the mean field theory concentrates on a hon-
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perturbative description of the large distance/low momentum limit., Moreover
there are anomalous interactjons7 in the Coulomb pgauge Hamiltonian which have an
equally complicated dependence on the gluon fields.

in the mean field theory the positions of the poles of the single parciclo
propagators depend on an infrared cut-off parameter. As the parameter gocs to
sero, the poles move to infinity and the propagators vanish. The time component
of the gauge fleld propagates instantaneously in the Coulomb gauge. As the
infrared cut-o{fl parameter vanishes, the Coulomb interaction becomes singular
and produces confinement. Perturbation theory in the physical vacuum is con-
siderably simplified because all Feynman diagrams with more than one gluon and/or
quark in a momentum loop vanish with the infrared cut-off. (The effect is a
continuum version of the quenched approximationlo in lattice calculations.)
Loops with a single quark or gluon are infrared finite if integration over the
time component of the momentum is performed before removing the cut-off. Ex-
ceptions to this rule occur when there are factors of the Instantaneous Coulomb
interaction to provide compensating singularities. The surviving perturbation
theory diagrams are summed to generate a set of equations for the quark and
gluon propagators and for the Coulomb interaction. Even though emphasis is on

the zero momentum Limit, the equations are renormalizable. Morecover, there arc

solutions consistent with the hypothesized singularity structure. The model is

sel! consistent. Finite energy bound states exist thanks to the effects of
s . , . o , 11

vanishing propagators and singular interactions. The Wilson loop has the ex-

pected area dependence. In a lowest order calculation, the effective quark-
antiquark potential i{s predicted to be linear in configuration space, at least
out to distance where pair production becomes important.

Given the success of the model, it is important to consider possible flaws
in its foundations. <Clearly the use of the Coulomb gaupe is both crucial and

Lthe most obvious target of criticism. The choice of gaupge is dictated by the
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need to quantize only physical degrees of freedom. It is precisely those trans-
verse gluon modes which do not propagate as normal particles. In addition, the
Coulomb gauge has the virtue that the QCD version of Gauss's law does not need
to be imposed as a separate condition on states.7 On the other hand, the Coulomb
gauge is not covariant; the condition 3-1 = 0 singles out a particular Lorentz
frame. Proper quantization in the Coulomb gauge is difficult and leads to inter-
action terms which are of arbitrarily high order in the coupling constant.7 There
are singularities associated with the vanishing of the Faddeev-Popov determinant
which can affect path integral quantization.12 In addition in any parameter
free gauge, it is difficult to verify that any particular result is not an arti-
fact of the choice of gauge.

Lorentz invariance is a problem in any mean field approximation to field
theory. If the theory is quantized canonically, it is possible to define boost
operators that transform states and operators to an arbitrary Lorentz frmae, at
least 1n principle.13 In a path integral approach the effects of a boost are
equivalent to higher order corrections to the simple states of the effective
theory. The choice of frame in the Coulomb gauge is intimately related to
both the identification of the physical degrees of freedom of gauge particles
and to the choice of the hypersurface of quantization. An arbitrary timelike
vector nu[n'n =n02"ﬁ'g-=l] can be used to define a covariant Coulomb gauge. The
theory is quantized on surfaces of constant T =n+*x. The gauge condlition is
3°A -1n*o N*A = 0, and N*A carries the T instantaneous interaction. The construc-
tion of Christ and Lee7 can be extended to reproduce a‘Hamiltonian" that generates
T translations. In each such covariant Coulomb gauge there is a mean field
theory 1in which AP wnun'A does not propagate. In every Lorentz frame there is
a confining mean field theory. However, it is not obvious that each such theory
is equlvalent to the others. The ground states are not identical.

The question of Lorentz invariance can also be approached from the underlying

invariance of QCD. All gauges are equally invariant if amplitudes of interest
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are calculated to all orders in the coupling constant. Since in the present
context perturbation theory is simplified by the non-propagation of quarks and
gluons, it is possible to calculate the effects of very large classes of dia-
graws and restore a measure of Lorentz invariance. The suppression of quark
and gluon loops reflects the difficulty in creating pairs of infinite energy
particles.

Finally it is appropriate to ask whether one should demand explicit Lorentz
invariance in a large distance/low momentum theory of confinement. The descrip-
tion of a meson as a quark-antiquark pair connected by a flux tube is certainly
not covariant or invariant. If a two-particle bound state is boosted, an infinite
number of ''sea" particles are created. Thus, any model of hadrons formed from
a finite number of constituents necessarily lacks Lorentz invariance, even if it
is written in ostensibly co-variant form.

One of the costs of quantization in the Coulomb gauge is the appearance of
interactions which have no obvious counterparts in other gauges.7 Derivation of
these anomalous interactions requires a careful transformation from the temporal
gauge, Attention must be paid to the Jacobian of the gauge transformation, the
integration over group elements which replace unphysical degrees of freedom,
and the Weyl ordering7 of the Hamiltonian. The Jacobian of the transformation
turns out to be the Faddeev-Popov determinant. When a square root of the deter-
minant is absorbed into the definition of state vectors, the result is a Hamil-
tonian which is independent of the Faddeev-Popov determinant. However, new in-
teractions appear which are anomalous in the sense that they do not appear
when the theory is quantized directly in the Coulomb gauge.ldi These terms are
complicated functions of the gauge flelds and the Coulomb Green's function. It
has been shown that new interactions are necessary for the cancellation of ultra-
violet divergences.l5 However, it appears that their only effect on the zero
momentum limit is to produce finite higher order (in coupling constant) correc-

tions.
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Singularities due to the vanishing of the Faddeev-Popov determinant do not
explicitly appear in the quantization method adopted here. The determinant never
appears explicitly. It is burled implicitly in state vectors. However, Christ
and Lee are able to recover the correct covarliant Feynman rules in the Coulomb
gauge while ignoring wave function singularities. Moreover, the determinant
vanishes only for sufficlently strong fields.l6 Since the mean field theory is
quantized explicitly in the physical vacuum, there is a suppression of the large
field components which occur at zero momentum in ordinary perturbation theory.
The philosophy of this work is that singularities arise as a result of dynamlcs.
One way to proceed 1s to use a perturbation theory that is well defined for weak
fields, re-sum the series, and then analytically continue. Problems due to the
Gribov horizon12 never explicitly appear.

The above discussion raises the question as to whether the whole calculation
is a pauge artifact. There are good reasons for choosing the Coulomb gauge to
define a noncovariant mean field theory. Moreover, it would not be surprising
{f one gauge is favored over all others for the analysis of the zero momentum,
large three-dimensional distance limit of QCD in Minkowski space. Moreover,
some of the key quantities in this model, i.e. the gluen propagator, are not
gauge invériant. Trouble can arise with the choice of gauge when calculations
are truncated to finite order in the coupling constant. It is important to be
able to calculate large classes of diagrams to all orders in the coupling con-
stant. A complete calculation of a gauge {nvariant quantity in any gauge is
gauge independent. However, even if the self consistency of the model is an arti-
fact of the choice of gauge, these results should still prove ugseful for the
analysis of important theoretical questions. Unlike bag models, potential models,
and other models of confinement,2 the full structure of QCD is retained. Per-
turbations are unambiguous., For example it is possible to calculate the vacuum
expectation values of scalar bound states and the mixing of gquark-antiquark

states with glueballs.
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The mean field approach to path integral quantization is developed in the
next section. The starting point is the Hamiltonian in the Coulomb gauge and
the result is a set of Feynman rules for diagrams containing quarks, transverse
gluons, and timelike (= Coulomb) fields. The gauge group is SU(N). Amplitudes
which vanish in the N-=+o limit, g2N fixed, are expected to dominate the confine-
ment process.l7 The third section develops the self consistency conditions,
most of which have appeared before. The Wilson loop is calculated in the fourth
section. Not only does the result display confinement, but the calculation
emphasizes the significance of the relationship between non-propagating gluons
and an instantaneous, singular Coulomb interactiom. Bethe-Salpeter equations
for the quark-antiquark bound states and glueball states are derived in section
five. The bound state equations have finite energy solutions. The energy spec-
trum is not calculated in this investigation. The Bethe-Salpeter wave functions
are normalized to make possible the calculation of diagrams with propagating
color singlet bound states. Anomalous interactions and other miscellaneous points
are covered in section six. The final section touches briefly on possible appli-
cations and conclusions. The appendlces are devoted to important technical de-

tails.

II. Quantization in the Coulomb Gauge
The QCD Hamiltonian in the Coulomb gauge 157
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Both the gluon flield Aj (r} and its conjugate momentum field Pi (r} are divergence
free in the Coulomb gauge.
»a 7a
VR =V =0 . (2.2)
-

implicit in the definition of the quark fields Wa(r) are color, flavor, and
Dirac indices. The quark mass matrix m is diagonal in flavor space. The gauge

proup is SU(N), and fa represents the usual set of anti-symmetric structure

bec
" N . a .
consrants. The NxN Bermitian matrices A~ satisfy

a b C

(A7, 1= 21fabc A , (2,3a)
a b, _ y
tr(A” AT = 263b . (2.3b)
The color magnetic field is
a ] Lo a a b ¢
I - ¥ 2.4
Bl 2 E"'1_']k(v;‘]‘!\"'k VkAj * z’fabcAj Ak) (2.4

> >

To lowest order in the coupling constant g, Faa,(r,r';t) is proportional to
- —)—' 5 + +|l + . . .

611,/\r—r |. Hence, qu,(r,r :t) incorporates the QCD modifications of the

ordinary instantaneous Coulomb interaction of quantum electrodynamics. This

. 3
modificd Coulomb potential is defined by o7

- Ty, - 3 u T 2, " 2 T T, P
PooOrrtie) = fatrt b (et (Y (e (2.9)
whie e U,z[,( Yt, 12" c1) is the weditied Coulomb Green Y o Tunction,
2. i b . + o _ 3 ' 5
Vst ranK () Ojncd(r,r ) = 6 8 (rmrt) (2.6)

The W subscript around the Coulomb term in the Hamiltonian indicates Weyl order-—
. - . . . a,>r a,*
ing of the factors inside the curly brackets. Since Ai (r) and Py (r) are
non-comnut ing operators, it is necessary to gpecify their ordering in the quantum
Hamiltonian. The final terms in (2.1), VI(A) and VZ(A)’ are the anomalous inter-
actions. They are absent when QCD is gquantized directly in the Coulomb gauge

. . . 18 .
rather than transformed from a well behaved gauge. Schwinger discovered the
nced for Vl(A) by requiring that the generators of Lorentz boeosts satisfy cor-

Focl commutation relaticons,  lxplicit expresslons for VJ(A) and Vz(A) appear In



10.
Appendix Al
Feyoman rules in the Coulomb gauge are calculated from the generating fune-
tion
W= Bfnca e 2@ )p,)
i ] o R
. (2.7)
, 3 . ra —ra L T.00
exp(lfdt[fd r{P «A" + iYyy ) -H] ,
where Il is augmented by terms coupling fields to external sources. The path in-
tegral in (2.7) involves only the physical components of the gluon field. There
are no additional gauge constraints in the integrand. Since H is quadratic in
a.,7 . . . .
momentum [ields Pil(r), it is conventional to explicitly carry out the momentum
integrations. The result is the appearance of the Faddeev-Popov determinant and
the need for ghost fields.7 An alternative methed of quantization is to treat
a r a.,7r
Ai (r) and Pid(r) as equivalent fields. First, however, T switch from configura-

tion space to momentum gpace.
. R
. 4 —1k0t +iker a
k=
AS(re) = Jdke AR (2.8)

The momentum field and the quark fields are similarly transformed. The Fourier
transform is equivalent to a change of variable in the path integral. The
Jacobian of the transformation is a constant that is absorbed into the normaliza-
tion factor N. S is that portion of the action in (2.7) which is linear or
quadratic in fields.

- m® fdtcats s* (o

s
0

(i BRI -R2(p) + & BR(K) B (p) [1 +F, ()]
Py 2 1

s 3 R0 ) I 47,001 + 8200 T ) + P00 KT () (2.9)

o

- BYp_B(p) + BUOIYB(L 461 (p)) + m(1 +G, (2)) 1y(p)
+PGane) + nYEI .

. a a i
Since both Ai {(l) and Pi (k) are transverse, only the transverse components of

(¢ —> + -
the oxternal boson sources Jiq(k) and Kia(k) are coupled. Thus, J*A is short-
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hand for JiPijAj where Pij(k) gdij -kikj/kz. The treatment of quark degrees of
freedom is standard; n and n are quark source terms. Counterterms appear in
(2.7). Tue functions Fl(k) and Fz(k) modify the gluon propagators, and Gl(k)
nd Gz(k) enter the quark propagator. These functions are expected to be even,
Fi(k) =Fi("k)- The addirions to S  are compensated by the subtraction of iden-
tical quadratic terms in the interaction Hamiltonian. The counterterms are
fixed by thep requirement that S, describe a mean field theory in which single
particle prepagators are fully dressed,

The exact generating function is expressed in terms of functional deriv-

atives acting on the free particle generating function.

W:exp(+iSI(i4 g , i4 aa :
(2m) GJi (~k) (2m) -51<i (-k)
I i 5 - (2.10)
m® MgP)7 oyt Sig(-p)
with
W= /D, et nw)n@ o
. L IDEDDWID)e
= N' exp(--i(ZTi)4 fdak d&pﬁa(p+k) (2.1L)
2
147, (k) Be +F, (k)
-}- —ﬂm;wwu +a q+a -.:1'— --.——--—-—g—-—-——- —?a u+a
{2 306 J7 (k) 2 J%(p) + T K (k) *K™(p)
K, o aa )
and
a0 = k- GF+E(0) (1 +F (k) + de
(2.12)

= koz - w(k)2 + ie .

The fermionic generating function ls

Wp = exp(~i(2ﬂ)4fd4k dapﬁé(P+k)

N 1¥7p, =¥+ B (1 +6,(p)) + m(1 +G,(p)) In(p)

RSO il 2' _’
dF(P) ) (2,13)

where



12,

B 2 2 2 2 2
ap(e) = p,° = 3U(L+G ()7 - m (L +C, (N . (2.14)
The standard path integral formalism yields the following "exact'" single

gluon propagators:

a b I >y 1 -
<Al (k) Aj {(p)> = om ) Sabs (p+k) P, J(k) ) . (2.154)
L Kk +F2(k)
(k) P (p)> = —4 6 6 (ptk) P, j(k) O (2.15b)
(2m)
+ iko
(k) A (p)> = (2n)4 dabﬁ (p+k)P ( ) ) (2.15¢)

The transverse projection operators arise from the fact that only the transverse
components of the vector sources occur in (2,11). The quark propagator is
) + .
[-v k0 +v k(l-+GIUQ) +m(l+(Jz(k))]UtB

_ i 4 ;
<P (PIP (k)> = = 87 (pk) _ (2.16)
o B (zﬂ)a dF(k)

The fundamental hypothesis of the model is that the counterterm functions in
{2.15) and (2.16) develop infrared divergences.

Interactions are described by S ='IHI(A,P,W,¢)dt. In momentum space this

I

becomes
s;(8,2,0,0) = 2’ fa%r a*kst (o 1 B BP0 Fy ()

Y

SIOTSIES B, 00+ B YR G, 0+ m, (1) 10|

+

4

ig(zn)4 fd 1a%2a%3 6% (1+2+3) B30 -R°3) 1)

I

fa*1a*2a%3a% §% (12434080 (1) X9 (3) RS2 -R% ()

1

2 b,
g;m)

abe ade

& m® fa%14%24%3 TOY-E2 () A% @) 8%y - [Ae (v (A) +v, ()

+

Z
8 em ' [at1ab2a*3a%hax 81 +2_+3 44 430

(2.17)

[ p PO (DR = 5 " e ¥, (-T-3,-5-45%)

Harde 393 %) - £ 303y "y
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Explicit expressions for the anomalcus interaction terms are given in Appendix A.
Except for the restriction to spatial components, the three gluon, four gluon,
and quark-quark-gluon terms are standard QCD interactions. 'The flnal term in
(2.17) is the modified Coulomb interaction that resulis when the time component
of the gauge field is eliminated by Gauss's Law. The operator transmitting the
color force has thz Fourier transform

- 3 —ixt ipeT iker' > o
e Pl tRTT Fo(ksx) (2.18)

Faa'(¥’r';t) = f d3pd k dx e

Ultimately it will be necessary to calculate this function from its definition
. . [ P _+->| T s
in terms of the modified Green's function Dab(r,r it).  1f the Green's function

has a Fourler transform like (2.18), then

+ -+

,(p,ﬁ;x) = (2ﬂ)3fd35 dy dz Dab(g,g;y)sz Dba,(—s,ﬁ;z)ﬁ(x—y—z) . (2.19)

The differential equation (2.6) becomes an integral equation in momentum space.
3+
dab6 (p+k) & (x)

3 2
(2m)7 p

-+ o
Dab(p)ksx) -

{(2.20)
1 4 ¢ -+ > o

+ ig face ;2 f d ' sA (s)p Deb(p—s,k,x so)
I1f (2.20)is expanded in a perturbation series and the result is inserted in

(2.19), one can prove that
-+ > d -+
Fop(Pskix) T [8D , (pyks) ] . (2.21)

In the g=0 limit Fa (g,ﬁ;x) is equal to the first term in (Z.20). More gener-

b

ally the Coulomb part of S as well as V., and VZ’ contains interactions of all

1’ 1
orders in g and can lead to the creation of an arbitrarily large number of gluens.
The mean field theory of confinement is defined by the following set of
assumptions:
1. There is an infrared singularity in the theory that can
be controlled by a cut-off parameter .

G G, diverge as u -+ 0.

2. The counterterm functions F 1* Yo

l! Fz’

Fach function has a term proportional to a constant A(Y), where
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A(Y) » was pu > 0.
3. In Feymman diagrams Integrations over Ps the time com-
ponent of a loop momentum, are to be performed before setting p = 0.
4. The vacuum expectation value (VEV) of the modified Coulomb inter-
action has the form

3 .+ >
ﬁabs (p+k) 8 (x)

<F (B k5x)> = F(p) . (2.22)

(2m)”
> -

As U > 0, the function F(p) develops a singularity at p = 0. The singu-

. . > 3 > - - > .
larity is of the form F(p) = A(W)S87(p) + F(p), and F(p) is not singular
-
at p =0.
These assumptions are shown to be self consistent in the next section.

Appendix B contains a discussion of the complicated multi-gluon dynamics
buried in the deceptively simple notation for the Coulomb term in (2.17). Thosno
interactions are best computed in terms of an operator product expansion for

Salirie >+ > -+ >
Fab(p,k;x). The vacuum expectation values of Fab(p,k;x) and qu(p,k;k) play
a prominent role as the effective propagators for the Coulomb interaction.

Hypotheses 1 and 2 imply that at fixed momentum all single particle prop-
agators vanish in the Y =0 limit. For example the <AA> propagator for gluons
becomes proportional to Fl/(FlFZ) -+ A"l + 0 when F, >> 1 and F >>k2. Moreover,

1 2
g ; 1/2
the pole in the k0 plane moves to ko = t(F}Fg)

+ FA >+ g5y o Q, If a
propagator occurs inside a momentum loop, there are, according to 3, contributions
from encircling the ko poles. The residue of the pole of an <AA> propagator

1/2

is proportional to Fl/(FlF =~ A°. The residue is finite at p = 0. Thus,

)
a momentum loop with a single quark or gluen line (and a number of instantaneous
Coulomb lines) has a finite infrared limit. In general each momentum integra-

. : -1 -
tion encircles a set of poles and compensates for one factor of A . Quark lines

are treated in the same way. Diagrams with two or more gluons and/or guarks in

a momentum loop vanish in the infrared limit. For n particles, a momentum loop
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is of order Alﬂn

In addition, the interactions in (2.17) never produce a mo-
mentum loop composed entirely of Coulomb lines. As a result there are no spur-

icus divergences from k. integrations,

0

Assumption 4 implies the existence of an infrared singular propagator for
Coulomb interactions. The singularity produces a positive power of the diver-
gent parameter A. Hence, finite amplitudes can occur when vanishing propagators
are matched by either momentum Integrations or singular Coulomb propagators. If
the Feynman diagram for a particular process contains L momentum loops, G gluon
propagators (of any type), Q quark propagators, and C singular Coulomb propa-
gators, the amplitude will be proportional to AM where

M=L+C-G-Q . (2.23)

In Appendix C the correlations between L, G, @, C, and the number of vertices

of various types are used to show that

., , (2.24)

M=1-n
EBEE qqg jo4:424

The maximum value of M is 1, and it occurs when there are no four gluon ver-
tices (n =0), three gluon vertices (n =0), or quark-quark-gluon vertices

28242921 g8g
(n =0), Diagrams with M <0 vanish. An example of an M=1 amplitude 1s the

q98
set of ladder diagrams for quark—-antiquark scattering via singular Coulomb ex-
change. {There is a constraint condition that eliminates the M=1 term to leave
a finite function.) Diagrams with M=1 are responsible for the infrared diver-
gence in the counterterm functions. It is important to remember that there are
no quark or gluon self energy diagrams in the perturbation series. The mean
field condition requires exact cancellation against the counterterms. The
operator expansion for the Coulomb interaction constitutes a similar "exact"
treatment of self energy insertions in a Coulomb line. The absence of self
energy effects coupled with the vanishing of large classes of multi-particle
diagrams leads to a much simplified perturbation series.

There is a technical point that must be mentioned., One could imagine a

complicated diagram with a number of particle propagators. Contour integrals
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are evaluated by the residue theorem. It is possible that in a particular loop
setting ko = +A + finite terms at one particular pole could lead to a cancella-
tion of A dependence in the denominators of other propagators. 1In that case
the naive arguments on counting powers of A would be wrong. Explicit calcula-
tion of a representative set of diagrams shows that this cancellation does not
occur.

In constructing a set of Feynman rules, one must recognize that there are
three spearate gluon propagators corresponding to <AA>, <PP>, and <AP>. There
are twe Coulomb propagators which are distinguished by their behavior at S = 0.
The VEV of the modified Coulomb interaction is singular in that limit, while the
second propagator is the non-singular VEV of the Green's function. The Green's
function propagator is needed to describe the multi-gluon interactions inherent

in the Coulomb, Vl, and V, contributions to SI'

2

ITI. Self Conslstent Mean Field Theory

The amplitudes corresponding to Feynman diagrams depend on six unknown func-
tions. The mean field model makes sense only if these functions can be calcu-
lated non-perturbatively. The simplest function to analyze is the VEV of the
modified Green's function. Given the generating function W in (2.10)}, one can
calculate the VEV of any function of field operators. The perturbation expansion
of Dab(;,ﬁ;x) is given in (Bl). The VEV of Dab has the diagrammatic represen-
tation of Figure 1. Diagrams which vanish in the A =+ limit have been eliminated.
A refinement of the argument of Appendix C shows that terms in the expansion of

> are proportional to AM with M = - n - . (The prescnce of

n - n
B8 BBEE 9498

two external Coulomb lines reduces (2.24) by one.) The only nonvanishing dia-

<
Dab

grams are those in which physical gluons are emitted and re-absorbed by the

gluon line. The perturbation series for this sub-set can be re-summed to produce

4

a Dyson equation for <Dab>.

D(K) = 55—, (3.1)
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where D(K) is defined in (B3). If the DgD0 vertex function in Flgure 1 (DU =1/k2)

is replaced by its zeroth order value,

2,2 > > 2
1l = Yo fadp B TR Gyl (3.2)
2¢2m) p°k

for the gauge group SU(N). The role of vertex corrections and other higher

N
order corrections is addressed in Appendix E. The propagator function A(p) is

-

5
of order AO

-
oo 1+ Fl(p)

AGD)

1]
R
—
o

o

fo O p 2o (L () (0 +E, (D))
© (3.3
1+ F (p) /2

T have used the fact, to be verified shortly, that Fl(g) and Fz(;) are indepen-—
dent of P, in the A > = limit.

Equaticns (3.1) and (3.2) were derived in an earlier work on the relation-
ship between confinement and properties of the QCD vacuum.4 The extensive discus-
sion will not be repeated here. Asymptotic freedom predicts that, within logar-

- -+ 2 > - , ,
ithms, A(s) + 1/s and D(s) » 1/s” as s + ®. Renormalization is necessary to
>
remove a logarithmic divergence in (3.2)., Analysis of the p » 0 limit shows that

-5/4
if A(;) approaches a constant, D(;) is proportional to (p2) . Conventional

perturbation theory sets A(g) = 1/p and D(p) = 1/p2 in lowest order.
The B'=O enhancement of D(g) is promoted to a true infrared singularity in
> -
F(p) = d[gDh(p)]/dg. Differentiation of (3.1) leads to

2 -
F(p) = A L+ g3

> 9 (3.4)
p- [1 -pT(p)]

with

2

2.2 >
1@y = e fad el let) Ly rpt (3.5)

4 >
These equations also appeared in the paper on the GCD vacuum. Since F(p) =+ l/p2
-+
as p + ©, the integral defining J(p) is logarithmically divergent. After re-

nermalization, the solution of (3.4) should lead to an infrared singularity in F(F).
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2~ .
F(;) is infrared singular if, as ;-+ 0, F(g) « (p7) " and n > 3/2. When n

is in the range 3/2 < n < 5/2, the singularity can be controlled by a simple

subtraction procedure. 1f
f

>
F(p) = —5—5—= (3.6)
2 2
[p° +u"1"
then for an arbitrary function H(E)
1) = [ FE-DHE = AEE) + T3 . (3.7)
The integral E(p) is finite as y + 0 and
o 2w T(3/2)T(n -3/2) ;
)\(11) = 21'1"'3 (n) (3.8)
u T
Equation (3.7) is equivalent to writing
3 -
F(B) = A 67(p) + F(p) (3.9)

- >
Integrals containing F(p) are defined from (3.6) with the stipulation that u de-

pendent divergences are to be discarded. For example, in (3.5) F(S—Z) can he

replaced by F(;~ﬁ), since p2k2 —(E'K)2 vanishes at 3

at g =0.

The mean field theory is complete when A(g) and
tions are calculated. Equation (2.15) for the gluon
exact. The sum of self energy insertions in a gluon
g2 corrections to gluon and quark lines are shown in
tions are indicated by crosses. According to (2.24)
singular Coulomb line contribute in the A + « limit.

..]_ .
grams are of order A ., The second order correction

=k. The integral is finite

the quark counterterm func-
propagatoer 1s assumed to be
line must vanish, Order
Figure 2. Counterterm inser-
only the diagrams with a

The other self energy dia-

to (2.15a) is

a1 4 @), = L s s @or, @
2
1- 2 > N 3 3 Y -+ <+
o Lok TR () - B [ 7S PSSR AGS) tr[P(8) PG ] (3.10)
(I(]\) Q 1 4(2,”)3
> D > 2N K] F(+ z) > e L
= AP )77y (0 - =2 7 [as 225 er(p(3) RO gy

4(2m > INES
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The identical combination of Fl’ F2, and integrals occurs in <PP> and <PA>.

Hence, the condition that self energy corrections vanish fixaes F1 and F2 (te

order gz).
P = § [ asFGDAG e PGP, (3.11a)
P, =2 [ dsFGE) Aig) tr [P@P@®] (3.11D)

with o = gzN/(2(2ﬂ)3). The corresponding quark calculation for each flavor

leads to -
L.z A+ 6(s))

6 (0 = % [ sF(E-0) > - , (3.12a)
k E(s)
(1 + C.(3))

' 3 + 2 .
() = § [ d'sFEEK) (3.12b)
E(s)
where o' = [(Nz—l)/Nz]a and
B3 = 3%+ cl(l-.*))2 + i+ cz("é))2 . (3.13)

According to (3.11) and (3.12) the counterterm functions are functions of three-—
momentum only; there is no dependence on ko.
The mean field equations have a remarkable property in the infrared limit.

When (3.9) is used for F(EFK), the gluon functions become

H

Fl(i{) AaA(ii)H‘vl(iZ) , (3.14a)

]

F,(k) = daAR) +F,G) (3. 14D)
where the bar over a function indicates the absence of an infrared singularity.
(i.e. F(K) is replaced by ?(K).) Assumption 2 of the model and {3.14) are mutually

->
consistent since A(k) is infrared finite.5

T 7 & o
9 1w+ Bl(k) aAA(K) + 1 + Pl(}c)

-
AR =
<4 Py ad + K+ F, ()
AR
1+ “F'l(k)
AN ' (3.15)
k™ 4+ F. (k)



The poles of the gluon propagator arce located at

[+ 7 ) 6%y ()

k =+
° T (3.16)
=+ {od + [(1 + ﬁl(ﬁ))(kz + FZ(E))]l/z}.
As A > @ the poles move to k_ = t+,

o]

The infrared singularity in the gquark functions can alsc be isclated

160 = 1+ 2 a6 @) ¢ 5,
+ 2E (k)
- >
1+ G, (k) . .
=-—1.—=(1+-—‘-’—A)(1+G.(k)) , (3.17)
ot - = i
1 - I 2E(k)
2E(R)
where 1/2
2, = .2 2 - 2 _
[(I:) - [_k__(_t_+_ .Gi) T_.‘E__t_(:z_l,_-]méf = _}‘____T_‘(K) e = Ot'A + F(i{) (3.18)
’ ] —_ _(‘14,',&,, 1 - 7(1:,73; 2 ' ) ’
26 (K) 2k (i)

1+ G (s) >
6. =2 [ads FE-D) L~k (3.19a)
1 2 = > 2
E(s) k
1+G,(s
5
G, (®) = %' [ a3 FE-D SV MU (3.19b)
E(s)

Again there 1s no dependence on the infrared cut-off parameter. The poles of the

quark propagator are located at
' o
ko= + (AR (3.20)
o -~ 2
As the cut-off parameter pu -+ 0, the poles move to ko = too,

In order to fully validate the mean field theory model, it is necessary to
show that there cxist solutions to the propagator equations with the expected
behavior. The gluon equations must be solved simultaneously for D(;), F(S),

- -+ A , > =+
and A(p). Then F(p) is used to determine G](p) and Gz(p). First, however, ultra-
vicolet divergences must be removed. The renormalization of the pairs (3.1), (3.2)

and (3.4), (3.5) was discussed in reference 4. A set of renormalization con-

. > - g > s > .,
stants are defined by D(k) = ADDR(k), A(k) = ZAAR(k), g = ZggR’ and F(k) =ZFPR(k).
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In addition DR(K) is replaced by a running coupling constant,

-+ > 2
BpDp(k) = g(k)/k . (3.21)
The renormalized equations with a subtraction at kz = vz are
= e @ - 1wl (3.22)
glk)  g(v) R R

> + -+ +
where [R(k) is given by (26) with the replacements A(p) +AR(p), gD(p~k)

> > > > 2
+ g(p-k)/(p-k)". A second fundamental equation is

2
> 1 g(k) 2. 2 > > q
@ = g&—(v)z VR0 + gV 13,00 - I, (0] (3.23)

+ - > > + >
with JR(p) equal to (3.5) with A(p) — AR(p) and F(p-k) FR(p—k).
=
Rencormalization of the equation for A(p) is complicated by the faect that the
integral defining fz(ﬁ) is quadractically divergent, and two subtractlions are ne-

cessary. One divergence is absorbed into Z,, and the other is fixed by the value

A

.
of AP(k) at some reference momentum p.
Y

= = - - - LT -+
1+ ElR(%i - PLR(v) ) i—+ FlR(p) FlR(V)
Ay (87 a3’
(3.24)
B R W S S S

The derivation of (3.24), together with constraints on the renormalization con-
stants, is given in Appendix D, ﬁlR and FZR are given by {(3.11) with all func-
tions replaced by their renormalized values. The renormalized coupling constant
impiicit in the definition of FiR is equal to the running coupling comrstant cval-
uated at k2 = vz.

The mean field theory model is consistent with its fundamental hypotheses
if FR(K) is infrared singular. The analysis of references 4 and 5 suggests that
as K -+ 0, a possible solution has g(k) + o and AR(ﬁ) + constant. 1 define

AR(O) = 1/m. The scale of the theory is set by m, an arbitrary parameter with

dimensions of mass. Using this ansatz I find the following set of equations:
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l = ) i . 6 W
O L AR (8 (3. 25a)
> 1 g(k)2 2
F(k) = = 7 [+ e Wk - I3 ., (3.25b)
k™ g(v)

1+ Tl(k) - Fl(v) _ 1+ ?1(0) - Fl(v)

ACK) 2 A(0)2 (3.25¢)

2 | - - Ko .
= k7 + Fo(k) - FZ(O) -5 [Fz(v) - F,(0)]

v

Since the coupling constant and all functions are renormalized, the R subscript
has been dropped. The linear nature of the integral equation for F(E) ls used

to set UZF(3) = 1. Since v 1s an arbitrary subtraction point, solutions to (3.25)
should not be sensitive to its value. The limit A(0) # O has been imposed on
(3.25)., However, solutions will not be stable under iteration if that choice

is not consistent with the equations.

One can show analytically that all functions approach their asymptotically
free values in the ultraviolet limit. There are logarithmic modifications to
power law behavior, and the coefficient of the logarithms differs from that pre-
dicted by conventlional QCD calculations.a The difference is expected, since the
ordering of infrared and ultraviolet limits eliminates diagrams whicii contribute
to standard perturbative QCD calculations. It is important to note, however,
that (3.25) is fully renormalized without the missing diagrams.

Analytic solutions to (3.25) are available in the K+ 0 limit.

1/2 -1/2
lim g(k) = (E%E) (k/m) , (3.26a)
>
k-0
1im AR) = 1/m (3.20b)
-+
k>0 , -1+i6
1im F(K) = "%-(55) (3.26¢)
E4O k m
where 8 = 0.0847 is the solution of
64 _sinmd 1
21 m0 * (3.27)

(1 +82)cosh md
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and f is not fixed in the infrared limit. TIf 64/21lm = 0.97 = 1, 8 = 0. The pres-
ence of an complex power in (3.26¢) is a defect of this lowest order calculation.
A linear, non-relativistic potential in configuration space corresponds to 8 = 0
and F(k) = k_a. Fortunately 0 is small, and there is the possibility that higher
order correction could produce a purely real power law dependence for F(ﬁ). In
the non-relativistic limit, the Fourier transform of F(K) is the configuration
space potentlal. Since m is the dimensionful scale factor in the potential, the
size of a color singlet bound state is of order 1/m. The deviation from a linear
potential for this small value of § does not become significant (i.e. 10%) until
r = 400/m. Pair production of hadrons becomes important well before that limit.
This argument also suggests the nature of important corrections to F(ﬁ). Appen—
dix E is devoted to a discussion of corrections, except those involving bound
states. The general topic of bound states 1s covered in section 5.

Appendix F presents an alternate calculation of F(K). Direct evaluation
of the VEV of the integral defining Fab as the product of two Green's function
operators leads to exactly the same singular behavior. One interprets the result
as due to the formation of a "bound state" of two D type Coulomb lines interact-
ing by gluon exchange.

The quark equations are renormalized in Appendix D. The result is

1+ G,(k) =1+ [16, (k) - G, (1, (3.28)

where IEi(K) 18 the integral on the right hand side of (3.19). The guark mass
and all functions are renormalized. The renormalized coupling constant u'R is
assumed to satisfy a'RluR = o'/a. (See Appendix D.)

A numerical solution of the complete set of equations is shown in Figure 3.
Since there exlst in lowest order solutions that fulfill the self consistency
conditions, the next step is to prove confinement and the formation of finite

energy, color singlet bound states.
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IV. Wilson Loop

The mean field model is designed to confine color. One way to prove con-
finement is to compute the VEV of the Wilson Loop for imaginary time T-ll,lQ
The calculation is a non-trivial test of the model. The result depends both on
the instantaneous nature of the Coulomb interaction and on the impossibility
of propagating physical gluons over finite time intervals. The quantity of
interest is

L = <P(eiggA.dR')>1 (4.1)
where P Indicates ordering of field operators around a closed loop. The loop

+
is fixed to be a rectangle with comers (0,0), (aR,0), (aR,T), and (0,T). With

this choice, L is equal to

R T
L = <tr{P exp(d f dg An(;c,o)) Pexp(if dt AA(KR,T))
0

0 :
o o (4.2)

P exp(i f do Ah(;d,T)) Pexp(i f dt(o,T)) }>
R T

> a.~t a > >
In (4.2) AU(X’T) = Au (x,T)A" and An = n*A. Before (4.2) can be evaluated, it
is necessary to define a propagator for the time component of the gluon field.
In the Coulomb gauge A_()";l (z,t) is eliminated from the Hamiltonian. However, the
coupling of the time component of the quark current to the modified Coulomb in-

. a.+
teraction shows how an external source coupled to AO {x,t) would enter the

Hamiltonian. The free particle action in (2.11) 1is changed to
2
W' =g expl-1m” [a'p dke (ot 210 B v 1 2m)) (4.3)
The corresponding propagator is

< 200 8 K> = E}iz 68" (pHOTF®) (4. 4)

To calculate the Wilson loop, one needs the corresponding propagators in con-

figuration space far imaginary time. Equation (2.15a} with ko -+ ik4 becomes



->
5 il f (1 + F,(k))
<. 2(x) A.P(y)> = ——992 fd“k o 1k (x-y) Pi.(ﬁ) +g§k~k}3f§m
* ] (2m) bk, e
4 .
N | | (4.5)
S P2y ~wik) |x, -y
= 2 fp, @ad oY), A A
2¢2m) J
and  (4.4) with A = ‘1A4 is
2 .
<a,2(x) AP(y)> = —8 8 fdak o1k (V) 2y
4 4 (zﬂ)é ab
(4.6)
2 S
= Ee 8, -y, ok VIR < 6k, -y VG
(2m)
. > - 2 = 1/2 N
The gluon energy is w(k) = al + [(1+F1)(k +F2)] . Since the propagator for

transverse gluons is proportional to exp(wal{xa—y4|), physical gluons do not
propagate over finite time intervals. When X, =Yyo the propagator is finite in
the A »> o limit.

Since transverse gluons do not propagate over finite time intervals, the
spacelike parts of the loop at T=T and at T=0 are disconnected from each other.

The loop factors into

T o

L = G(RY2<tr{P exp(Lf dTAa(KRT))P exp(i [ 4,(0,T)dm) }> (4.7)
0 T
where
1 R >
G(R) = § <trlexp(i [ do A_(no,00)}> (4.8)
Q

G(R) is T independent. Although a complete calculation of G(R) is difficult,
one does find that term-by-term G(R) - 1 as R + o, Confinement comes from the
remaining VEV in (4.7). There are contributions from equal T propagators act-
. > > > . ) _

ing across the loop from x = nR to x = 0, In addition it is possible for a
T-like gluon to be emitted and re-absorbed by the same side, if the contracted

fields are nearest neighbors. A typical term in the expansion of the VEV in

(4.8) is
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a a b b
_ n+m 1 n 1 m
an = (i) 12 o D W W e S |
T Y1 Ta-1 o “1 “m-1
oy ) dy,e [ @)D def dzp 0 dz) (4.9)
o o o T T T

a a b b
1> n,> 1 4
<A4 (nR,yl) "'A4 (nR,yn) A4 (O,Zl) ...A4 (O,Zm)>‘

A nearest neighbor contractlon has the form

y Y. y
i-1 i i+1 a a a a,
i i+l i+ i+1 -+
>
ooayy ] v [ dyp 2T T, TRy A, T @Ry )
o} o 0 is s8]
(4.10)
y y
2 1-1 i
- 2(N-1) 1
= TR %4y 3 V(0)£ dyy £ 9¥i40

The A? matrices satisfy (AaAa)ij = 2(N2~l)/N Gij' The chain of m ordered integrals
is shortened by one for each adjacent pailr contraction. The integral that marks
the position of the contraction is empty in the sense that its argument is unity.
Contractions along a side of the loop that are not between adjacent fields wvanish
due to the conflict between time ordering and the instantaneocus propagator.

The second multiple inctegral in (4.9) {s re-ordered to match the form of

the first.
o zl %m~l o T zm z2
! dzy [ dz, ... dz = (-1 [ de [ dz .. f dzp . (4.11)
T T T 0 o 0

Contractions across the loop from ; = nR to x = 0 connect equal times, Since

the two sides are time ordered, contractions cannot cross each other, The equal
time propagators are like rungs on a ladder. A generic term in an has r rungs,
s nearest neighbor contractions on one side, and t nearest neighbor contractions

on the cther side.

s+t
L= (DPOM®F O Ny T s, (4.12)
s,t

where n = 2s + r and m = 2t + r, The gauge group factor is p = Z(Nz-l)/N. The
residual integral I(r,s,t) includes a sum over all possible orderings of the

r rungs, 5 contractions on one side, and t contractions on the other. FEach
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-> =g
contraction across the loop from x = nR to x = 0 produces a factor of V(R).

4+t
The trace of the product of color matrices collapses to NpS t . Re-ordering ol

the integral in (4.11) means that rung contractions are between adjacent pairs
of A matrices in the product in (4.%). For example, if s=t=0, equal time rung

contractions set a =b b,, etc. When s # 0 and t # 0, pailrs of adjacent

17 %p=1 "
%\ matrices are first eliminated by (4.10).
Computation of I(r,s,t) begins with a simple example. If r =1, s = 1,
then the integral on one side has the form
0 vy v,
i dy; £ dy, £ dy,[F(y)) + Flyy) + F(y3)]

T2 T (4.13)
=5 f F(x)dx

Q

In general summing over all possible ordering of s adjacent contractions along

a side of length n = r + 28 replaces the original ordered integral by one of

length r multiplied by 1%/s!. Thus, I(r,s,t) is reduced to
I ST 00
(f,S,t) - S!——t_l‘ (r; ’ ) . (4.1_[{)

The remaining integral I(r,0,0) is

T Yy-i o1 r-1
I(r,0,0) = (J dy, v f y(f dwy vouf dw )8(y —wy) - 8y ~w.)
Q (e} 0 o]
(4.15)
T
r!

When the various factors are brought together and summed over n and m, L Lecomes

, oa . 5 ) t
1. = NG(R)Z X S_l;‘_ [_ Q[‘f\if,LQ_l] %,i 1_ p_'l_‘;_(_o)J i_' lp']‘v(R)]r
a,t,r=0 7" ’ )
(4.16)
= NG(R)2 e'p[v(o) “V(R)]T
1£ F(K) is given by (3.6) with n =2,
2 N2 -1

oVR) = - BN =D gy (4.17)

4MN ?
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and the exponential in the Wilson loop has the area dependence that signals
confinement.

The simplicity and success of this calculation depends on the instantaneous
propagation of the modified Coulomb interaction. Finite propagation time would
lead to crossed rungs and longer range (in T) interactions along a side of the
loop. If physical gluons propagate over finite time intervals there are addi-
tional complications. The general discussion of the A dependence of amplitudes
indicates that there are no contributions with internal three and four gluon

vertices or with Iinternal quark loops.

V. Bound States

There is a large gap between a general proof of confinement and the deriva-
tion of explicit bound state equations. The mean field theory model incorporates
the full machinery of field theory. Thus, it is possible to derive Bethe-
Salpeter equations for both gluon-gluon and quark-quark states. Although the
three quark calculation is possible,20 it is not discussed here.

The need to consider three different gluon propagators (Eg. (2.15)) is a com-
plication in the analysis of gluon-gluon scattering. A new index which labels
field type is added to the gluon field: Aila<;> =A%) and A7) - piﬂ<;).
The gluon propagator is two-by~two matrix in type space. The Wilson loop cal-

culation identifies the modified Coulomb interaction as the source of confinement.

With the new notation the gluon Coulomb Hamiltonian is

2
i, = B om® fd'1 dh2 a'3 df sfa 2434 0)
b .—)' [J -+
{fabCKr (W& ") F(-1~3) (5.1)
-+ d + a
[fade At (3)'Au (A)Mtu] ’
where
0 -1
M = )] . (5.2)
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A gluon line in a Feynman diagram carries momentum and three discrete indices,.
The n-rung, color singlet ladder amplitude with Coulomb exchange for the

process [W/24+p,i,b,r] + {W/2-p,k,d,t] =+~ [W'/2-k,j,c,s8] + [W'/24k,m,e,u] is

6. .6
™ o iw = —enlste w2 v g g (5.9)
N -1
where
g (0+1) s _ igN W, W
1 ir ands _ ig ¥ W
e (PoRSWD LR ICEIR IR SNC I
(2m*
(5.4)
w - (n)1 r' Lnis
rr"DrHrl(z +X) MttIIDthl( )\P I( k)w)mu *
and
2
(l)lr js _ ig™N
v oW, T 4 F(p -0 MMy lSijakm ) (5.5)
(2m)
The propagator matrix In type space is
>
1+ Fl(p) - ip,
1
D(p) = =7 . (5.6)
d(p) ipo p2 + FZ(;)

(n)

The ladder amplitude M is of order A in the infrared singular limit. FEqua-

tions (5.4) and (5.5) can be summed to produce an inhomogeneous Bethe-Salpeter

equation for %

D B A B N L (5.7)
n=1 n=1

Since the Coulomb interaction is a function of three-momentum transfer only, the
wave function ¥ is a function of the four-vector momentum wu but not ¢f the time

components of pu or ku. It is possible to evaluate the X integration in (5.4).

W ﬁ > > >
fdx Dr”r'(f + x) D ”t‘( x) - Ei Drnr.(g + x) Dt”t'(z - x)
o] W 2 -+ o>
d(§'+ x) d(E - Xx) L{x,W) + wo

(5.8)

~ > > o~k > -

N Drurl(w/z + X) Dt"t'(w/2 - X)]
LKW = W

where
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A -i
D) = o (5.9)
i -
A{p)

and L(X,H) = w®/24%) + w@/2-%), w®) = [(1+F1(1<’))(k2+F2<1€))1”2. The matrix
5(;) is infrared finite, but I = 20A., The infrared divergence in the interaction
F(K) is cancelled by the divergence in Z.

Gluon-gluon scattering is not a physical process, except when it occurs as
an insertion in a more complicated dlagram. On the other hand, bound states are

solutions of the homogeneous Bethe-Salpeter equation.

YEGEW) = - S F G, @2 4D p (2 - D)
Kt 0 2 11 Kk

MDOI/2 + 01, BGE/2 ~ BT,

(5.10)
Z(?,ﬁ) + wo

~d -> ~k o ->
(MD (W/2 + x)] IMD (W/2 - )] v pel
+ ey } ‘Pk,t,(x,w;wo)
Z{x,W) - wo

This equation must have a finite, non-trivial, infrared limit if color bound
states are to exist. There are awkward kinematic factors in (5.10) which reflect
the different dimensions of the fields Aia(p) and Pia(p). It is helpful to

make the change

r > > _ - > > - r! - o .
VRN = 8 (/2 4 ) 0, (/2 - p) o (W) (5.11)

. 10
0(p) = < 5 . (5.12)
¢ Alp)

~
The propagator D(p) simplifies.

where

~

+ T - > 1
D'(p) = O(p) D(p) O(p) = 2a(p) , [1 + a,l (5.13)
where o, is a Paull spin matrix. Since P+ = |1 +02]/2 is a projection matrix,
- >
D'(p) projects out a certain amplitude in type space. The complex conjugate

*
matrix D'(p) is proportional to P =11 —02]/2. If
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1
0 - -»>
MG, = 07h) Mo G = [ AGD ) (5. 14)
J . 0
AGD)

the homogeneous Bethe-Salpeter equation becomes
ir,» = 3 -+ > - -+ > >
¢ (p,WsW ) = -2 fd7x F(p—x) Pyir(W/2 + %) Pkk,(W/Z - x)

AGW/2 + %) AGH/2 - %) M(W/2 + p, W/2 + 2)”, MW/2 - p, W2 - Z)tt,

(P+)rTrII(P+)tTtll + (P-)r'r”(P")t't”

5(X, W) + W LXMW - W
(8] (o]

iftr' oo
kvtn(xsw;wo)

The plethora of indices makes (5.15) appear complicated.
In the infrared limit % = 2ah + I = 20X and F(g—ﬁ) = A63(g-g). Moreover,

A(E)M(B,;) = —102. Since 02P+ =+ P_, the condition for infrared finite solu-

tions is

(Dlr(g,ﬁ;w ) =P, ,(ﬁ/z + 3)13 ,(ﬁ/z - 3)
kt 0 i1 kk (5.16)

ity >

() D boapa o (paWiW )

+rr' Y+ et + (P—)rr'(P—)

te'
The wave function is transverse in spin indices. In type space two of four possible
amplitudes must vanish. Cancellation of the infrared singularity with ¢ # O is
possible only if the coupling constant o in (5.15) is identical to the constant

o in the divergent part of Z. The color singlet channel is the only one in which

the equality holds. Using (5.16), one can write ¢ in the form

r () )
b= @ HWIO X "X
_ (=) (=) .
+ (I wo)e~ Xy X s (5.17)
with
1
X(i) _ (5.18)
+ i
The ++ and -- components of (5.15) can be projected out to produce a pair of

infrared finite integral equations for two gluen bound states.
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B0 + w10, G0 ) = a fa’x F(p-%)
(5.19a)
(W @R, G + v @ Eihe_ (i )]
(G, - 10 (. #w ) = a [a*x FG-0
(5.19b)
' @ me, &) + v @ Ewe i),

= >
E(;;W) is the infrared finite part of Z(p,ﬁ). Spin indices have been suppressed

and

(£) > o 1 [AG/2 + %) + AG/2 + pIIAG/2 - ) + AGH/2 - D))

—~
g
o]
=
—r
| ]

(5.20)
AGW/2 + D) A(H/Z - D)

If each A(;) is replaced by 1/p, equation (5.19) is identical to the Tamm-
Dancoff equation that appeared In an earlier paper.

The Bethe-Salpeter equation, unlike the Tamm-Dancoff equation, can be renorm-
alized.21 Using the set of renormalization constants of Appendix D, one finds
L = [(L4F] (V) (1H(F, £ (V) —FZR(O))/\)Z)]”2 I, = zZER. If the energy W_ is re-
normalized by the same factor, all dependence on renormalization constants dis-
appears from (5.19).

The Tamm-Dancoff version of (5.19) was solved in reference 3. A relati-
vistic WKB method was used for high lying energy levels. The ground state and
first few excited states were determined numerically. The WKB calculation has
been repeated for the Bethe-Salpeter equation kinematics and the results are
unchanged. The conclusion is that 1if F(;—g) confines according to the Wilson
criterion, then (5.19) has an infinite number of bound state solutions. In the
limit of large principle quantum number N', the bound state energy is propor-

V2 f vy « k% ag k >0,

tional to N'
The derivation of the Bethe-Salpeter equation for quarks follows the pattern

laid down for gluons. One considers ladder diagrams for quark-antiquark scat-

tering. The color singlet channel is projected out. Summation of the ladder

diagrams leads to an inhomogeneous integral equation. The homogeneous equation

for bound states is
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¥ (BN ) = e [ d"x BB
of ) (2m) (5.21)
e
[YOS(~N/2 —x)]ua, wa,B,(x,w;wo)[s(w/z -x)yo]BB,

Again it is possible to do the X, integration. The quark counterparts of the

gluon projection operators are the positive and negative energy projection

operartors

> >
Yoy-k(l + Gl(k)) + Yom(l + Gz(k)

> 1 -
A = ; -= . .22
£ (1) 2 1t 2E(k) : .22

The quark Bethe~Salpeter equation is
Y3.EM) = o [dx TG0

A2 - %) YW A G2 - 0
Y.+ W
f o]

(5.23)

+

} 3

EF -

> > >
A (/2 - %) YL ) A_GH2 - D
W
0
3> &> =
and Zf = E(W/24x) + B(W/2-x) = o'\ + Ef. Using (3.17) and (3.18) one finds that
the projection operators are infrared finite.
A finite equation is possible only if there is a cancellation between Zf
-+ > 3 .+ > -
and F(p-x) « A (p-x). In all qq and qq channels, except the color singlet one,

infrared cancellation leads to ¥ = 0. The color singlet wave function becomes

¥ = T+_ + W_+, where the subscript indicates projection with A+ or A_. If
Yoo=m e twile (5.24)
-+ -+
the bound state equations are
(Z(5,W) - W 18 (B,W,W ) = A (-W/2 - pia’ [ax FF - B
o ~+ o -
(5.25a)
> > > > -+ -»
[P GGWSW ) + @ (x,W5W )T (W/2-p)
- > > -+ - _ > > 3 T >
(Zp(p,W) + W 18 (p,WiW ) = A (-W/2 -p){a'[ d’x F(p -x)
(5.25b)

> > - > > >
[¢L+(X’W§WO) + Q+_(x,w;wo)J}A_(w/2 -p).
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In the center of momentum frame where ﬁ = 0, these equations are identical to the
Tamm-Dancoff equations of reference 3. There it was shown, both numerically
and with the WKB approximation, that there exists an infinite number of bound
states. One expects such a spectrum in a confining theory. Again it is possible
to renormalize the bound state equatilons.

The mean field model produces finite enmergy bound states from infinite energy
constituents. Moreover, the three-momentum of the bound state need not be zero.
There are no in principle restrictions to heavy quarks. The relationship of the
renormalized quark mass to the conventional quark mass is not clear. A detailed
discussion of the solutions of (5.19) and (5.25) is beyond the scope of this
paper. Corrections to the wave equations cannot, according to Appendix C, in-
volve three gluon, four gluon, or gluon-quark-quark vertices. Gluon exchange
between the Coulomb rungs of the ladder is possible, if one includes the multi-
gluon terms in the operator product expansion of Fab(ggﬁjx). In addition, non-
pianar kernels are possible, although suppressed in the N 2o (of SU(N}) limit.

Finite energy bound states constitute a new class of particle that must be
added to the Feynman rules of the mean field theory model. One should consider
diagrams where bound states occur in intermediate states. The A #® limit does
not appear to suppress such contributions. The [ull apparatus of the field
theory allows normalization of the Bethe-Salpeter wave functions, a requirement
for the derivation of generalized Feynman rules. Some results are given in

Appendix G.

VI. Anomalous Interactions
The Coulomb gauge Hamiltonian given in (2.1) has two terms which do nﬁt
appear if QCD is quantized naively. The so-called anomalous interactions appear
when the theory is first quantized In a non-singular gauge and then transformed
to the Coulomb gauge.7 The need for VI(A) was recognized by Schwinger18 many

years ago. The generators of Lorentz boosts do not satisfy the Poincare algebra
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unless Vl(A) exists. Christ and Lee7 started with the temporal gauge, quantized
the theory, and then transformed to the Coulomb gauge. Althoupgh the distinctlon
is ambiguous, the Vl(A) term arises when explicit dependence on the Faddeev-
Popov determinant is eliminated with commutation relations. The second anomalous
term, VZ(A)’ appears when gquantum operators are Weyl ordered. The Weyl order-
ing is necessary for deriving the correct Hamiltonian to use in the path integral.
Recent calculations demonstrate that these extra terms are necessary for renormal-
izability.15 They cancel divergences that arise in higher order (g4 and beyond).
Only with these extra interactions is one able to reproduce the results of stan-
dard caleculations. On the other hand, these interactions have been ignored in
the development of the mean field model. The mean field model is designed to
describe the low momentum limit of QCD. Thus, it is possible that the extra
terms In the Hamiltonian are irrevelant in the infrared limit. This section is
devoted to a justification of the neglect of anomalous interactions.

An important feature of the mean field model is the halance between the in-
frared divergence in quark and gluon self energies and the divergence in the
modified Coulomb interaction. If the anomalous interactions also produce infra-
red divergences, then there could be cancellations with the standard terms and
confinement would be a spurious effect. This is unlikely. fThere is no direct
coupling te quarks in either Vl(A) or VZ(A). (See Appendix A) Quark amplitudes
are insensitive to these terms. Gluonic corrections to quark amplitudes neces-
sarily invelve gluon propagators which vanish in the infrared limit. Since the
cancnical momentum field Pia(p) does not couple directly, the same logic sug-
gests that bound states in the gluon sector are unaffected. The VEV of the
modified Coulomb interaction remains the only candidate for the source of the
confining interaction., Moreover, this VEV is insensitive te anomalous interac-
tions for the same reason that quark amplitudes are insensitive.

The only way in which Vl(A) and VZ(A) can scuttle the mean field model is
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for them to generate effective two~ and/or four-gluon interactions which are
infrared singular. The question 1s difficult to settle with absolute tinailty
because of the complexity of reliable, non-perturbative calculations even
within the restrictions of the mean field model, Since the origin of Vl(A)
seems more fundamental, T analyze it first. An effective two-gluon coupling can
be derived from (A2), The structure of Vl(A) ig that of a loop composed of D-type
Coulomb propagators. As shown in Figure &4a, the loop is bisected by a fictitious
gluon., A fictitious gluon carries the momentum, color, and spin of a physical
gluon, but does not introduce a momentum dependent preopagator. Using the oper-
ator preoduct expansion for each Dab(;,z;x) in (A2), one finds the set of dia-
grams in Figure 4b. Since the operator product expansion does not allow gluon
lines to re-couple to the same Coulomb line, gluons are either external or couple
to the opposing Coulomb line. Non-planar diagrams do not survive the N »w
limic. Moreover, only planar diagrams will cancel the planar contributions of
the standard Coulomb Hamiltonian. The diagrams of Figure 4b can be summed to
give Figure 4c. In the limit that all vertices are replaced by points, the

two gluon effective action arising from Vl(A) is

R a
[ aev () = - 5 [d'p dksM (pH) A () A% 00
16(21m)
(f a’ss,(-0), D) DG-3) [ dee Ce) HDODE-D} (6.1)

This result 1s to be compared with the Aia(p)Aia(k) term in (2.9). The s and t
integrals are infrared convergent and ultraviolet divergent. They presumably
cancel a g4 divergence arising from the standard Coulomb Hamiltonian. If the

m1/23—5/2

s integral is cut off at infinity and evaluated with D(;) o (A(0) =1/m}),

one finds it 1s proportional to 6imp0. The t integral is identical, and the net

result is a constant.
[ arv ) = g [ab a*ket (o0 n?a f0) A0 (6.2)

The constant may cancel in the renormalization process. Unlike the Fz(ﬁ) term
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in (2.9), the effective action in (6.1) is infrared finite. There is no diver-
gence proportional to A. For comparison the finite part of Fz(ﬁ), after renor-
malization, is proportional to kul, if the Coulomb interaction F(K) @ k_a.

Although (6.1) does not have an Infrared singularity, there is the possibility
that a singularity could develop from non-perturbative effects at the fictitious
gluon vertices. The discussion in Appendix E indicates that corrections from
a finite number of gluons spanning a vertex cannot alter the infrared behavior.

The analysis of Appendix F can be used to calculate non-perturbative corrections

corresponding to Figure 4c. An approximation to (A2) which includes (6.1} is

i 303 2 3
[dev (A) = - B—— fa'p, d7p,d"k, d7k, dx, dx
1 5(om) 2 P RS TR A |

dl

4 4 4 b
2dy1 dy2d 8y d de tl d t,

4 4 e' 3.+ o+ > > 3o+ 3,0+ >
[d"sd"t A% (s) A (£) 5 87(p otk k) 87 (shsy4s,) 87(L+E +ty) (6.3)
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6(So+to+xl+x2+yl+y2) fadefcbefxe'yfw'd'z (2m = ky k2(sl)i(82)j

- = > + > > o
< " . [} .
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The VEV of a pair of D's is evaluated in Appendix F. In that limit (6.3) is

4 2
fdev () = - —f5~§ AJ%~“~E-Id4p dakAia(p) A 206" (o
(2m* [N°-1] J
3 3 3 + > o
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The wave function ¥(p,k:W) is defined in Appendix ¥. Tt is the color singlet

wave function for two D-type Coulomb lines bound together by gluon exchange.

Without solving for ¥, I cannot conclude that there are no infrared singular-

ities buried in (6.4). The singular function F(ﬁ) is a particular integral
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over W(;;ﬁ;O). If W(;,E;ﬁ) is a homogeneous function with the dimensions neces-
sary te make F(K) singular, then a simple scaling of all momenta in (6.4) by p
suggests that the factor in curly brackets is proportional to pz. There is no
evidence of singular behavior in the p =+ 0 limit.

The color factor N2/[N2—l]2 vanishes in the N + @« limit. Color singlet
wave functions do not couple strongly across a vertex. Other color configura-
tions might not be suppressed, but there is no evidence for singularities in those
channels. The two Green's functions In the definition of Fab(;,ﬁ;x) couple in
a way that enhances the infrared behavior. The two Green's functions in VL(A)
couple differently.

It is possible to analyze the three terms of fVQ(A) in the same way. Again,
there are fictitious and real gluon lines. The obvious infrared singularity
from <Fab(g,ﬁ;x)> = A68b5(3+§)6(x)F(;) is suppressed. Either it leads to an
irrelevant c-number, or the projection operators for fictitious gluons force
the terms to vanish when F(;) ia replaced by A 6(;). Wherever it appears, F(;)
can be replaced by ?(;). The contribution of IVZ(A) to the two gluon action,

Figure 5, in the point vertex limit is

2 2

fu e = - S8 o' a'ks® proa M o) A %)
8(2m) J

(Ja's Pelogs, ex (2 pG-DH1 3 [ DG) DE) DEH)]

+ sj[P(§+€)-9(§+3+E“)-“€]i £D(D) aég [£7D(3) D349 ] (6.5)
+ 2sj{P(§+§)-P(3+§+E’) -?E]i g“D(3) D(a4) T(D)
by @ RE-RE 2'd) p@) FRE-D)

where d[gD(g)]/dg = F(;). The first s integral in the curly brackets is infra-

red divergent. However, the t integral produces a multiplicative ultraviolet

divergent factor. This term must explicitly cancel a higher order correction

arising from the standard Coulomb Hamiltonian. (See Appendix E) One can ex-
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plicitly check that F(;) is replaceable by f(;) everywhere else 1n (6.5). In
addition, one can show that in the infrared limit, the other s and t integrals
are finite and scale to produce an overall k“l dependence for the factor in curly
brackets. Although there is no %pfrared divergence, the k +0 behavior matches
that of FZ(K) in (2.9). The g4 correction to FZ(K) cannot be rencrmalized with-
out the g4 terms from IVZ(A). It is not surprising that the infrared behavior
of the two terms matches. Together they produce a finite higher order correc-
tion to the calculation of the gluon propagator function A(;). Vertex correc-
tions should not alter this conclusion.

Since the contribution to the two gluon effective actilon is infrared finite,
there is no reason to expect that the anomalous interactions generate singular
multi-gluon vertices. Wherever it occurs in the operator product expansion of
VZ(A)’ F(;) can be replaced by f(g). The coupling to gluons suppresses the
infrared singularity. Thus, an obvious source of infrared divergence is removed.
The only other scurce of infrared divergence would be the binding of Coulomb
lines in a singular, color singlet configuration. The analysis of VI(A) showed
this possibility 1is not realized at vertices. Multi-gluon interactions derived
from V2(A) may well have a singular momentum dependence in the infrared limit.
This dependence matches that of higher order terms from the standard interac-
tions and is necessary for renormalization. The effects of multi-gluon vertices
are suppressed by the vanishing of the propagator for physical gluons., There-
fore, the only place where the anomalous interactions are relevant is in higher
order (ga and beyond) corrections to the <AA> propagator. The fundamental equa-
tions of the mean field model are not sensitive to such corrections, if their

momentum dependence matches that of the standard interactions,

ViI. Discussion

. >
This paper presents a study of gquantum chromodynamics in the p + 0, infrared,

limit, Conventional perturbation theory is useless In this domain., Progress ls
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possible only if assumptlons are made about the physics of the infrared limic.
The important experimental observation is that colored states do not exist as
independent entities. One possible mechanism to explain this fact is developed
in this work. Quarks and gluons are not observed because there Is an infrared
singular interaction which endows them with infinite energy after renormaliza-
tion has removed ultra-violet infinities. A candidate for the source of the
singularity is identified. One is led naturally to an explicit mechanism by
which color singlet bound states of finite energy can be formed from infinite
energy constituents. The mean field model is distinguished by the fact that
confinement by an infrared singularity 1s self consistent. When QCD Is analyzed
subject to the hypothesized infrared behavier, exactly that behavior emerpes.
Proof of self consistency requires a method for quantizing the theory and a method
for carrying out non-perturbative calculations.

The mean field theory starts with path integral quantization in the Coulomb
gauge. The non-perturbative nature of the infrared limit is invoked at the
beginning. The quantized fields describe non-propagating quarks and gluonsj
The quadratic, free particle Hamiltonian is modified by counterterms in order
to describe the physical fields. The counterterms are calculated by the re-
quirement that the sum of all self energy insertions in particle propagators
must vanish. A Hamiltonian based quantization prescription is used to avoid the
appearance c¢f the Faddeev-Popov determinant and the need for ghost fields. The
trade~off is the necessity for dealing with non-local interactions. Perturba-
tion rheory with non-propagating quarks and gluons is simplified by the suppres-
sion of large classes of Feynman diagrams. The remaining amplitudes are summed
to produce non-perturbative Iintegral equatioms for the functions of Interest.

A key element in the non-perturbative process 1s the use of a variation of the
operator product expansion. The infrared singularity originates 1in the VEV of
the operator for the modified Coulomb interaction. When the VEV is actually

calculated, 1t is found to be singular. Quark and gluon energles are found to
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be infinite. In the limit of large momenta, the infrared finite vortions of all
functions match approximately the large momentum limits of conventional QCD cal-
culations. The model is subjected to several tests. The Wilson loop calcula-
tion provides a general proof of confinement. Bethe-Salpeter equations are de-
rived for color singlet bound states, Correction terms are investigated to
establish the stability of the infrared limit. There is no evidence of incon-
sistency. Thus, as it is presented here, the mean field model appears to pro-
vide a framework for the calculation of almost any hadronic amplitude.

Are there problems with this candidate for a model of "everything™? There
are serious questions related to the choice of the Coulomb gauge. Tt is non-
covariant and singular. This iIssue was addressed at length in the introduction.

However, it must be emphasized that the infrared limit is when the three-momentum

vanishes and the spatial distance becomes large. It is, therefore, not a Lorentz
invariant concept. Moreover, bound states composed of a finite number of con—
stituents are not Lorentz covariant, Therefore, a non-covariant gauge is appro-
priate. The Coulomb gauge is unique in that it identifies and quantizes the
physical degrees of freedom of the gauge field. The word physical is used in

the sense thalt were o gluon to appear as a physlcal stale, it would be desceribed
by those degrees of freedom, Of course, one would like to transform the Couloub
gauge version of the mean field model to a more general gauge and understand how
confinement can occur in those gauges.

A second, but related, question is directed at the fact that confinement is
produced by an instantaneous interaction. Again the zero momentum limit can be
invoked to suggest that effects due to propagation time should be small, Cal-
culations of relativistic bound states in more conventional situations22 show
that the domlnant part of the potential can be treated as instantancous. More-
over, in the mean field model the nature of the vacuum state is not specified.
It the confining potential is due to pressure of the physical vacuum on a bubble

of perturbative vacuum, then that potential would, in fact, be instantaneous.
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The confining interaction has a second attribute which seems to confound conven-
tional wisdom. It transforms as the fourth component of a four vector rather
than as a Lorentz scalar.23 If quarks with mass are moving slowly in the pres-
ence of an instantaneous interaction, there is no essential difference between
the fourth component of a four vector and a scalar. An interesting question
is which would give the best results for a relativistic system,

There are technical aspects of the mean field model which merit further
study. Foremost, of course, is the fact that the singular limit of the inter-
action function F(k) « k~2n is almost, but not quite, consistent with the
phenomenologically favored value n =2. The fact that n=2+ i€ is of concern,
The model is so tightly constrained that most corrections vanish in the infra-
red limit. On the other hand, the power dependence of F(k) is fixed in a way
that makes it sensitive to correction terms. The infrared limit of both the
VEV of the Green's function, D(k), and the propagator function A(k) are deter—
mined by matching powers of momenta iIn the comsistency equations. F(k) is
subject to the more demanding requirement that the coefficients of the power
dependence must match. Higher order corrections do not change the power depen-
dence of D(k) and A(k) but do affect F(k).

Other technical assumptions deserve closer scrutiny. TFor example, the
ordering of infrared and ultraviclet limits is delicate. There are diagrams
which are needed to produce the correct behavior in the limit of asymptotic
freedom yet which are eliminated by the infrared singularity. Re-~ordering
of limits would also restore the universality of coupling constant renormaliza-
tion. 1In fact, the structure of the mean field model is very thipghtly con-
strained by the requirement of self consistency. It is hard to see how any of
the hypotheses could be relaxed without destroying the model. Yet one might
want less than complete suppression of the quark-quark-gluon vertex. Re-
ordering of limits might help. The final requirement is that no physical quan-

tity can depend on either the infrared cut-off parameter or the details of the
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ultraviclet regularization procedure.

The whole subject of bound state amplitudes requires further analysis. The
Bethe-Salpeter equation should be solved for the bound state spectyrum., One can
test for the reasonableness of the associated phenomenology. The simple non-
relativistic limit3 suggests the results should not be too different from ad hoc
treatments of the bound state problem.24 Extension to color singlet configura-
tions of three quarks is straightforward.20 The analysis of Appendix G can be
extended to calculate hadronic coupling constants. If weak and electromagnetic
interactions are introduced, it should be possible to calculate almost any matrix
element. Solutions of the bound state wave equation when the total momentum is
not zero should be particularly interesting.

1f the mean field model is accepted as a valid approximation to QCD, there
are an unlimited number of theoretical applications. Everything is calculable.
For example, the quark mass is an inessential parameter. Are there solutions
to the counterterm equations for quarks which produce a quark mass when the
perturbative mass is zero? If so, one would have a dynamical model for chiral
symmetry breaking.25 One can investigate <Fqu“v> and <¥¥> to study the forma-
tion of condensates.26 In the path integral formalism the nature of the vacuum
state is not addressed. Using the effective Hamiltonian for gluons coupled tao
bound states, one can study whether a scalar, low mass bound state develops a
non-zero vacuum expectation value. These applications are possible if the mean
field model 1s a reasonable approximation of the physics of QCD in the E + 0
limit.
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Appendix A: Anomalous Interactions

In configuration space Vl(A) is given by7

2

__8 .3 3 3
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In momentum space this becomes
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Although fdtVl(A) appears to be of order gz, the first non-vanishing term is of
order gA. If either factor of the modified Green's function Dab(;,z;x) is re-
placed by its zero order value, Sab6(34ﬁ)/p2, fVl(A) vanishes. When each factor
of Dab in (A2) 1is viewed as a Coulomb line that emits an arbitrary number of
gluons, this anomalous term is seen to contain two mutually interacting Coulomb
lines which can also exchange gluons with external sources. An important ques-
tion is whether the interaction between the two lines leads to an enhanced in-
frared singularity. The singular modified Coulomb interaction Fab(g,ﬁ;x) is
also an integral over a product of modified Green's functions. The color in-
dices and the momentum dependence are different. This problem is addressed in
section 6.

The configuration space form of VZ(A) is complicated. In momentum space the
expression i1s marginally simpler.

2
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-
where Pij(p) = 6ij - pipj/pz. The first term is manifestly ultra-violet diver-
gent. Contributions from VZ(A) are needed to cancel ultra-violet divergences

that arise from the Coulomb interaction. Although Fab(g,ﬁjx) appears ex-

plicitly, the importance of (A3) in the infrared 1limit is unclear.
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Appendix B: Coulomb Operator Product Expansion

When the integral equation for Dab(g,ﬁ;x) is dterated, the result is an
infinite series expansion in powers of the coupling constant g. Substitution of
this series into (2.19), the definition of Fab(g,ﬁ;x), leads to the relation
F = d[gD]/dg. The structure of the Coulomb interaction operator Fab(g,ﬁ;x)

can be calculated from that of the Green's function operator. The infinite series

>
for Dab(p,k,x) is

§ . 6(pHk) 6(x)
p x
- +_ _ 1 ab i c > o .—}- i
(2m) p P k
+ 7 U)"f £ o f
n=2 3¢ €% Cu P
L
4 4 (B
ds, .... d's : n
! = 553 +% -7 3.) 6(x-Is, )
1

*2 » > 2 N L 2
p (P -5 ... (p -] s,)
1 1 i

c
>

£ lspep 4 fe,)+(3-3)) ...Xc‘“csn>-<§ )
1

The nth term in this series is comprised of nt+l zeroth order Coulomb propagators,

l/;z, separated by n vertices at which gluon fields are coupled. Momentum is con-

served at each vertex. If Dab(g,ﬁ;x) is a sub-unit in a Feynman diagram, some

of the gluon fields attach to other elements of the diagram, and the rest become

gluons that are emitted and reabsorbed by the Coulomb line itself: (See Figure 1)

An alternative expansion of Dab(g,ﬁ;x) is
> > 5
D (pskix) = <D, (p,k;x)>

+ f dASDiig;i(E;ﬁ;x;s) Aic(s)63(p+k—s) S8 (x -so)

(B2)
s 4 4 (n) > >
+ z fd s. ...ds D Lo (p,kix;s, ...5_)
ne2 1 n Cacy ".cnb, i, ...in 1 n
€1 “n 3
:Ail(sl) ...Ain(sn):d (p +k —Zsi) 6(x —Zs; )

where the : : notation indicates that the gluon fields are to connect to external
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(i.e. not the same Coulomb line) vertices. Thus for n=2, the contraction hetween
the two field operators is zero. FEquation (B2) constituies an operator product
+ >
expansion for Dab(P,k;x).
The first term in (B2) is the VEV of the modified Coulomb Green's function,
One can either calculate 1t in perturbation theory or use invariance arguments

to show that

6ab

(21r}3

<nab(§’,§;x)> - S(p+k) 8(x) D) . (B3)

(1)

+ >
{p,kix;s) has the structure of Figure ba. There
abc;i

The one gluon function D

are two [actors of the VEV of D and the gluon is emitted from a vertex func-

ab’

tion which in lowest order is proporticnal to igpi.

D(l) >

1 )
ach:i p,k;x) = o3 D(I:'){lgf‘rjmb[pi +I, (P, k) 1IDCK) . (B4)

The vertex function Fi(;,ﬁ) is one line irreducible. There exists an integral
equation for irreducible vertex functiens. (See Appendix E) The two gluon
function (Figure 6b)} 1s more complicated, but generalization tc n gluons is
strajightforward, at least 1n principle.

The utility of the operator expansion is that the one, two, etc. gluon vertex
functions are benign. They are ultraviclet finite and do not change the nature
of the infrared singularity. In Appendix E it is shown that each vertex repre-
sents a finite, calculable correction to a lowest order result.

If the vertex functions for gluon emission along a Coulomb line are replaced
by the momentum factor of lowest order perturbation theory, the operator expan~
sion of the modified Green's function has exactly the structure of (Bl) with each
l/p2 replaced by D(D). Gluons couple to external vertices, not to other gluons
along the line. The approximation is justified by the gecal of identifying the
dominant contributions in the zero momentum limit.

The operator of interest is Fo= d[gDab]/dg. When the nth term of {Bl),

b
i -+2 - >
with 1/p” - D(p), is multiplied by g, there are nt+l factors of D(pi) and
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n+l powers of g. Thus, the operator expansion for the Coulomb interaction is

1
am

P @Kix) = 5 (5, §GHOSG0 F(p)

+igf [F) D) + D) O IR (R0 +p

rap’ 1 fatsF@DE-Dpl0 + DEIFE-3)DE
1°1 ®1%

e e
- (RS -> > > 2 > > > >
+ D) DE-DF® 1R T(e)p X LS sx-s )+ (3-3):

) (B5)
4 4
+ ) ()"t N fd%. ...d's
ne2 aclel en_lcnb 1 n
+°1 -+ +%n > n-l -
tA (sl)'p . A (sn)'(p - § si):
n n n
d n+l_ .+ -+ - -+ > S 3 >
g 8 DP() D(-s...D(p - % s )1 8(p +k -§ 5;) 8(x —§ 5,,)

The Feynman rules used here are based on this expansion. The general structure
of the nth term is a Coulomb line with n+l segments. One of the segments is in-
frared singular, F(;), and others are non-singular, D(;). The singular Coulomb
propagator occurs in n+l different locations., When external glucns are attached,
the modified Coulomb interaction in SI has the form shown in Figure 6c. The

“external gluons at either end can be replaced by guarks.
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Appendix C: Infrared Singular Limits

Consider an arbitrary Feynman diagram with G Internal gluon lines (of any
type), Q quark lines, F singular Coulomb lines, and D non-singular Coulomb lines.
The number of vertices of each type is specified by Nys where o indicates the
particles coupled. TIf there are L momentum loops, the amplitude corresponding
to a given diagram is of order AM where

M=F+L-6G-0¢ . (C1)
The number of locps is related to the number of lines and the number of vertices
of all types.
L=1+G+Q+F+D-]n . (C2)
o
L1 there are no external Coulomb lines of either type,

2F = n +n + n . (C3a)

2D = n + 2n +n +n . (C3b)

Equations (C2) and (C3) can be used to write M in terms of the number of veortices

cf each type,

M= - n - n -n . (c4)
32424 :3 192924 998
The identity
= 5
MeD nggD + nqu ’ (€5)
led to additional cancellations In (C4). This last rolation is doritvod {rom the

observation that a single Coulomb line couples at the ends to either two gluons
or two quarks. The Coulomb line is segmented intec VEV's of Coulomb operators
separated by vertices with gluon emission. (See Appendix B) The linearity of
the relationship F = d[gD]/dg means that only one segment along a line is F type
and all the rest are D type. If the F segment is at the end of the line, then

for that line n =1=n + n . If the T segment is in the middle, the
FgD geDd qqD

Thus, (C5) holds for each internal Coulomb line and [or

- + .
"rgD TpuD "qgb

a complete diagram with an arbitrary number of Coulomb |ines.

The bound on M is actually somewhat stronger in practice. The coupling of
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quarks and gluons to a singular Coulomb line often vanishes at zero momentum
thereby cancelling the A+1 dependence. At an ¥gD vertex there is an explicit
factor of ;. When quarks or gluons are internal, the antisymmetric coupling
at ggF and qqF vertices produces a suppression factor at $=0. Therefore, F in
(C1) should be replaced by Fs’ the number of singular F lines. The right hand

side of (C4) is reduced by Fs - F.
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Appendix D: Renormalization

Divergences in the integrals of section III are absorbed into seven renormal-
ization constants and the quark mass. The seven constants are defined by

DB) = 20, F®) = 2 (B, AB) = 2 B), & = Zy8p, 1+ € () = 2 (146 (B,

1+ Gz(;) = Zz(l-+G2R(;)), and g' = Zg gR'. A distinction is made between the
gluon-gluon-Coulomb coupling constant g and the quark-quark-Coulomb constant g'.
They are equal in lowest order, but their renormalization differs by a finite,
calculable factor.

The subtracted and renormalized version of (3.1) is

> 1 2 -1
Zp. (k) =—=<[1-2722 g I (V)]
2 R R
D'R X g "AD (o)
2
Z "L 7
D —_
x [1 - —BA ggllp(®) = (W11
1 -2 2,72 g T (W)
g A'D SRR
If
ZD =1+ gRIR(\)) ; {D2)
and
2.2,
Zg ZD ZA =1 , {D3)

g = -— . (D4)
R 11 g [0 1,0 ]

When the running coupling constant g(k) = kzgRDR(k) is introduced, (D4) is

equivalent to

L1 _ _
S " e - IR - 1Ml (03)

R

and 8g = g(v). Equation (3.25c) is the result of subtracting (D5) once more at

+
k = 0,

The renormalization of (3.4) for F(k) proceeds in the same way.

Z
2 2 2 _p gky? 2 2
ZFFR(k) = kK'D(k)T[L + g J(k)] = kz A 7 1+ Zg ZAZF gR JR(V)]
2 2 : (D6)
x [14—B_ AT 213,00 = 3,11
g —
142 %722 g %5 (» R R R

g “A°F BRr R



The choice
2

2 2
Zp = 2y [1+ zg 2,25 Bg JR(v)] R (D7)
converts (D6) into (49b).
Two subtractions are needed to render finite the integrals in (3.15). This
is accomplished by writing (3.15) in the form
LA F )+ (R0 -F0] 1+ R+ [F0 - F 6]
2 2
A(k) A(p)
F,(v) - F, (p)
= - pHin 4 2 2.0 (08)
2 2
v - p
- _ gkz _EZ) _ _
+ F, (k) - F,(p) - [F,(v) - F,(p)]
2 2 vl 2 2 2

Next renormalization constants are introduced and the subtraction momentum p is

set equal to zero.

2 - - - - -
1-+%g ZgZ, FlR(v) [1 + fl[FlR(k) —FlR(v)] i 1+ fl[FlR(O) - FlR(v)]]
z,? Ak A(0)*
(D9)
2 = -
Z 7. F. _(v) ~-F, (0) 2
F "2R 2R 2 = - Kk - -
= (1+ % 5 YK +£,(Fyp (k) ~F,(0) =~ =5 (Fyp(v) ~F, (0N 1,
A v v
where 2
7, g7,
£, = B 5 ~ -, (N10a)
1_+zg Ll Fip(V)
2
Z "z /2
e - (D10b)
L. zg,ZF FZR(v) —FZR(O)
Z, i
Using the conditions
1+2 %22 F (V)
zA2 = &5 A IR ) (D11)
. zg Zp Fop(V) = Ty (0)
Z, V2

and
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2
Zg ZF ZA
1= 5 - , (D12)
1+ zg ZFZA 1R(v)
one finds f, = f, = 1, and (D9) becomes {3.25c¢c). Equation (D12) is compatible

1 2
with (D2), (D3), and (D7) if the divergent parts of JR(v) and FlR(U) are

equal. This condition on the renormalizability of the mean field model is
satisfied. The coupling constants at the DgD and ggF vertices remain equal
after renormalization., In addition, ZA is finite.

Quark counterterms atre renormalized in & similar way. Equation (3.19) takes

on the form

- 2
zl[l + GlR(k)] [1 + zeg, IGlR(v)]

(D13a)
x [1 + gl[IGlR(k) - IGlR(v)]] s
_ ZpZ .222
22[1 + GZR(k)] = [1 +-»—%%r-IG2R(v)]
1 (D13b)
x [1+ gz[lGZR(k) - IGZR(v)}] s
where 5
2o Lo
g]. = & 7 T s (D]_Lh‘])
1+ zeg, IGlR(v)
2
2.2y Z,]%
g, = g 22 1 , (D14b)
Zgt "2,
1+ —8 2 10 (v)
Z 2R

and IGi(k) stands for the integrals on the right hand side of (3.19). One of
the factors in the integrand is the infrared finite quark energy function

2

R(s) = 20871+ B +m (L + B, 082 e T (o) (D15)

1R
The renormalized quark mass is mp = (Zl/ZZ)m = (4/3)m, 1If

2

Zy = 1+ zeg, 16, , (V) (D16a)
Zp2 ,222
2, =1+ =B 210 (V) |, (D16h)
2 7, 2R
2
ZpZo T =2y (D16c)
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all divergences cancel, 8, = By = 1, and (D13) becomes (3.28).
The divergences in the various integrals can be analyzed with dimensional
regularization. Poles appear at d =3 dimensions. Certain ratiocs of renormaliza-

tion constants are finite. In particular

1 - IG,. (v 1/2 .2
zgz/zg.2 - 1R 75 - %) 2 m)
(F, (V) ~F, (0))
[ - Ty (L - > ]

The quark and gluon couplings to a Coulomb line differ by a finite factor after
renormalization, a consequence of the suppression of certain diagrams. (When
N =3, Zgz/zg,2 = .57). 1In order to recover the results of conventional QCD re-
normalization, cone must hold the divergent constant A{i) fixed both for the Py
integrations and also for renormalization. Only after renormalization should
the A + « limit be taken. The missing diagrams are not expected to make linite

contributions to any amplitudes.
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Appendix E: Corrections

Perturbation theory in the mean field model 1s simplified by the elimina-
tion of quark and gluon self energies and the suppression of certain vertices.
The price of that simplification is a non-loecal Coulomb interaction. The deriva-
tion of the self consistency equations required, as a practical matter, a number
of approximations. In particular calculations in the effective field theory
were carried out to order gz. This appendix is devoted to a discussion of a
variety of higher order diagrams., If new infrared singularities appear or if
ones present in lowest order disappear, the model is not stable under pertur-
bations. The diagrams to be discussed appear in Figure 7. The question of con-
vergence of the perturbation series is not addressed.

The operator product expansions for the Green's function and the modified
Coulomb interaction were simplified by the neglect of vertex corrections at the
points where gluons are emitted from a Coulomb line. Figure 7a shows the first
correction to a point vertex. If a gluon of momentum ;+K is emitted by a D-line
carrying momentum ;, the factor K(§+ﬁ)-g is replaced by X(§+§)-[g'+ ?(S,K)]

where

PG = - o ks DG (RS Bk K [3-3) (F1)
The integral {s convergent; no ultra-violet renormalization is necessary. There
are no infrared singularities. The infrared limit of (El} is obtained by scaling
all momenta by a common factor Y and using the infrared limits of D(s) =« 5_5/2
and A(s) = sD. One finds that both the point vertex term pi and Ti are of ovder Y.
Hence, the use of (El) in the operator product expansion makes no qualitative
change in infrared or uvltraviolet properties.

Figure 7b depicts a generic higher order contribution to Fi(;,ﬁj. Simple
power counting for a diagram with N internal gluons and 2N internal D-lines

shows that thetre are no ultraviolet divergences in any order. The scaling arpu-

ment indicates that the infrared limits of D(s) and A{(s} are matched so that
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- '+'+ -
Fi « ¥ in any order. UMoreover, as a vector, Fi(p,k) is proportional to a linear
> > -» > > > -+
combination of the vectors p and k. In the limit p +0, A(p+k)°F(p,k) vanishes,
There is as much infrared suppression from the full vertex function as there is
2
from a point vertex. Thus, on the assumption that higher order in g° means
smaller, the neglect of vertex corrections in the operator product expansion
is justified.
Smallness of finite higher order corrections can be tested with Figure 7c.
One has a vertex insertion in the integral I(k) used in (3.1) and (3.2) to
calculate D{k). Numerical evaluation is necessary. Consistent with the scaling

-
behavior of the vertex, there is no change in the k +0 power dependence of D(lk).

If D(k) = nk_s/z, then (3.25a) leads to a condition of the form 1 = n210. The
' 2
vertex correction changes this to 1 = n210 + nall = nzlo[l +Il/Io ] =
2

n Io[l +0.11]. There is a 5% shift in the coefficient N. The derivative of
Figure 7¢ with respect to coupling constant produces corrections in the inte-
gral equation for F(k). The small shift in coefficients is not in the direction
needed to produce a real power law solution for F(k) at Q**O.

Figure 7d illustrates another type of ostensibly infrared {inite correc-
tion to 1(k). There are three loop integrals, four propagators, and a factor
of F(k). However, as mentioned in Appendix C, the antisymmetry of the coupling
of F(K) to Aia and Pia suppresses the singularity when there are no external
gluons attached to the Coulomb propagator. In that case there is a sum over the
different types of gluon propagators. Figure 7d is of order A_l and wvanishes in
the infrared limit.

The full operator product expansion for Fab(g,ﬁ;x) was not used in the cal-
culation of the counterterm functions. Two gluon terms in the expansion produce
the g4 corrections to the gluon self energy shown in Figures 7e,f,g and h. Unlike
diagrams with three gluon, four gluon, or quark-quark-glucn vertices, these con-
tributlons do not vanish in the infrared limit. The gluonic corrections to Fl(k)

and Fz(k) are
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(%) 2 ;3 3 N N
FoUUR) = [d7s d tA(s)A(t) [ (k-8) *P(E) *P(R) P (8) * (kL) ]
(£2)
—= 21% [g° D(+D) D(k+t-8) D(k-3)]1
B
and
2
r, 0 = & fads @t laGe)/ace) ~1] tr[P(3) P ()]
[+ - (BD) 5 £ 167 pGE+D* G ]
g” 8 (E3)
ra? fads a’c igi; [(E-R) P (3) P (0) +P(k) * (5+0) ]
4 Lg% @D pE-E-3) p(-E-8)]
g

The quark loop diagram of Figure 7h adds to (E3) but is suppressed by a power
of N. The coupling constant derivative generates the singular function F(k)
through F =d{gb]/dg. In each integral there are factors that eliminate the
delta function in F(E) > AGB(R), and there are no manifest infrared singular-
ities in (E2) or (E3). For comparison the lowest order terms in (3.11) are
singular. A scaling argument indicates that (E2) and {(E3)} have the same k =0
behavior as (3.11). Hence, the higher order terms in the operator product ex-—
pansion cf Fab(;,ﬁ;x) do not generate singularities but rather produce finite,
higher order corrections.

The quark loop in Figure 7i was dropped because it vanishes in the infrared

limit. Its contribution to F2(k) is

PG - 26° . a%s e (s +t k) 2%
2 = 3 —— 7 2
(2m) (s) F(t) P
x [E(e) E(r) + m (1 +8,(s)) (1 +8, (1) (54)
+ G+ 3R D) QG (D QG N,

where £ = 20X + E(s) + E(t). This integral is of order A“l, but it is also
quadratically divergent. Using dimensional regularization, one finds that the
coefficient of the pole is of order Az. Moreover, Fz'(k) is a function of koz,

contrary to an essential assumption. However, the renormalization procedure
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used in (3.24) involves subtractions at kz =0 and k2 =v2. The residual finite
integral vanishes as A+, There is no contribution from the quark loog and
F2(k) is a function of three-momentum only.

The last corrections to be considered here are shown in Figure 7j,k. These
are quark and gluon loop inmsertions in the singular Coulomb propagator. Although
the VEV of the Coulomb interaction operator is infrared singular, gquarks and
gluons actually interact via the Coulomb interaction as modified by these self
energy insertions. The singular function F(k) should be replaced by F'(k) in
the counterterm Integrals of section 3 and in the Bethe-Salpeter equations of
secticon V. The two functions are related by

P07 = BT+ 100 + NONE (ES)

The gluon loop integral is

1) = - %jd3s 43¢ 83 (s4e-K) tr[p(;’)P(”‘t’)}[iEig + %E_% - 2]

(Lo)
204 + w(s) + w(t)
[(20A + B(s) + @(L))” - kozl
and the gquark term is

o - gfdss 3. 63(5 +to-k) 20'A + E(s) + E(t)

@ N E(s) B(e) [(20'A + E(s) + E(e)? - k7]
(E7)

(m° (1 +8,()) (1 +G,(6)) - set(1 +G,(8)) (148, (£)) ~E(s) E(v)]

) 2
Both integrals are logarithmically divergent, functions of ko , and of order

A—l. They are also proportional to k2 in the k »0 limit. Lf A —+e_  both inte-
grals vanish. Cleser analysis reveals a problem. If one considers the depen-
dence on the cut-coff parameter |, one discovers that IG and IQ are proportional
2n-3 2 -1 2n- - 2 2
to u n 3k . (A o« | B 3] Therefore, if F(k) L [k™ +u ]n,
-1 2 2" 2n~-3, 2 .
F'(k) 7 = [k™ +u"] + Bu k™, (E8)

where B is linear in the quark mass and 1/A(0). Integrals with F(k) replaced
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by F'(k) diverge as | >0, but the actual | dependence 1s not consistent with

A = u3“2n. In other words, if (E8) is true, the infrared singularity in F(k) is

not maintained in higher order.
When (E5) is renormalized, the problem goes away. The quark and gluon inte-
grals are both proportional to kz. If F(k) = f(k)/kz, F'(k) = f'(k)/kz, and

(k) + I,(K) = K21 (k)

Q

1 1

frady et s rao - e T - 1) (E9)

The subtraction renders the integrals ultraviolet finite. Choosing v =0 and

requiring f'(O)_1 = f(O)_l = (, one finds

1

a0t s faom 10 - 1) (£10)

Since I(k) -I(0) is proporticnal to k2 as k>0, the infrared singularity in f(k)
is maintained in F'(k). One can safely let u->0, A-»w, and [T(k) -1((3)] >0.
While it might seem that an obvious point has been belabored, the existence of
the infrared singularity in F'(k) as well as in F(k) is absolutely crucial for
the whole model. Were a higher order correction to modify the k=0 limit, the

mean field model would collapse.
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Appendix F: Bethe-Salpeter Equation for D-Type Coulomb Lines

The modified Coulomb interaction is defined in terms of a particular inte-
gral (2.19) of the product of two modified éoulomb Green's functions. Direct
calculation of the VEV of the Interaction requires the ability to calculate the
VEV of the product of two Green's functions. In addition, to understand the
anomalous interactions, one must compute the VEV of products of Green's func-
tions and/or modified interactions. Consider the quantity

JOURACHETRS

= (2W)6 fdxdy 6(x+y-z)<Dab(g,§;x) Dcd(g,?;y)>. (FL)

When the operator product expansion of Appendix B (with polnt vertices) is
used for Dab(;,ﬁ;x), one is faced with summing the diagrams of Figure 8. The
two Coulomb lines interact with each other via gluon exchange, What is needed
is the Bethe-Salpeter equation for Green's function - Green's function scatter-
ing. In the ladder‘approximation the two contributing amplitudes are related by
crossing.

b=+ > > > - > -+ ->
8(2)H, 1(p,ksq,T) = 8, 8_,6(p+K) S(I+T) D(B) D(Q) 8(z)

b, -
+ fdxdy 6(x+y—z){@id(p,g;ﬁ,?;x,y) (F2)

ab > + >

- ab
+ tI’dc(p,r;k,q;x,y) -9

o cd

B - -
(p,qik, 3%, v}

The single gluon exchange amplitude is
b, >
fdxdy S(xty=-z) @0 2d(p,k;q,r;x,y)

= =8(2) § £, F g DEIDED@DE) e GH) - qAGHO (F3)

aeb ce
> > > >
X §(p +k +q +1r) .
Since ¢0 is common to both ladder amplitudes, it is subtracted to aveid double
counting.
A general ladder diagram has both colored and color singlet components.

Only the color singlet one is expected to produce an enhanced infrared singu-

larity. When the singlet part is projected out,
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[ axdy 8Gety-2) 820 (3, 35K, 73%,9)
6ac6bd - -+ > -+ + >+ >
= 525 8(2) DEID(QDERID(T) §(pHictqrr) (F&)
NS-1

- (K +) f¥+
- -r
R s

s
and ¥Y(s, ;E) is a three dimensional Bethe-Salpeter wave function. The integral
equation is
¥(E, 00 = ah(s-t) (5-F) P (5-T) - (5+8)
+ o [au DERDE-T) B-F) P (5-u) - B+ (F5)
AGG-u) WU, 15T,
The VEV of a product of two Green's functions is

ab =+ + + >

KB R0LT) = 6,8, S+ S+ §(a+r) D) D)

ab
> -> -+ -> N . e +_K ++K N e
+ DARIDIGIDUODLE) §(pHietarT) (8 8 [YESY, 5 1B bap P (p+k) cqa(pHoO) |
Nz -1 ac bd 2 2 2
Erﬁr glﬁ +++ > L N S
) -z — 'u - . . 5 -
+ 8 b Y T ) — P(p+k) *qA(p+k) ] (F6)
2
‘(_N_ -1) T I A
T e N aebfced PP (ptk) *qalp+k) ] '

S .
The VEV of Fab(p,k;z) is proportional to the infrared singular function F(k),

where

- o

F) 8GHO8 = [ a¥s o 20,358,

ad (r7)

u? + [ adsnd?

Retaining just those terms which survive the N-+w limit, one finds
F(E) = D% Kk? + ¥@)] (F8)

where
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¥(@ = fads b2 ¥(-k,-3;0)

1l

il

a [ads D) ?Rer(F-0) K G- (F9)

+ o [adu pw)? Bep@-0) ok AG-E v
When (F8) is used to write T(K) in terms of F(E), the integral equation for W(ﬁ)
becomes (3.4), the integral equation for F(k).

This alternate derivation of (3.4) 1s useful because it suggests that the
singularity in F(ﬁ) arises from the binding of two D-type Coulomb lines by gluon
exchange. Since there is no need to compute the derivative with respect to
coupling constant of unknown functionsg, it is easier in this approach to identify
possible corrections to F(K). Approximations that could be improved are the
ladder approximation, the restriction to color singlet configurations, and the

neglect of the crossed ladder amplitude.
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Appendix G

Finite energy bound states constitute a new class of particles that can be
emitted, absorbed, and propagated. Moreover, in a confining theory there are
an infinite number of such states. The set of Feynman rules for gluons and
quarks should be augmented by rules for bound state interactions. A complete
treatment is beyond the scope of this paper. However, a brief discussion of
bound state amplitudes provides a nice illustration of the power and complete-
ness of the mean field model.

There is a standard procedure for normalizing bound state Bethe-Salpeter
wave functions.27 Solutions to the inhomogeneous equation develeop a pole as the
time component of the total center of momentum four vector approaches the bound
state energy. The residue of that pole is an outer product of the bound state
wave functions. WNermalization of the residue is tied to the strength of the
inhomogeneous term in the Bethe-Salpeter wave function. The gluon integral equa-
tion is given in (5.10) with the inhomogencous term of (5.5). The wave function

> > >
Y(p,k;W) in the region wo = F has the form

ir + » js -1 im > +is, 7 & .
wkt(p’k’ Mdmu © B w E IJJkt( W) Yo (KW, (cL)
where
. W
¢kt(p’ ) = rr.(a + p) tt'(§ -p)
(+) (+) i+ .
[EGW + DX Xr 8, () (62)

sa@w xS xS e G,

= - ¥ >
and Z(;,ﬁ) = 20\ + E(g;ﬁ). The wave functions @+(p,w) and O (p,W) are solutions

of (5.19) with WO = F. The normalization condition is

. > -
1= fddp A(g + ;)A(-‘; - 3)[6+ (p.#) ot (p W)
(G3)
% { o
k(

There is no dependence on the infrared cut-off.

-0, 0L,
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The effective Hamiltonian for four gluons interacting via a color singlet

bound state is

8 8 .8
_ o L2my e 4 4 bd " ce
Hypp = = i fa'wd"p a7k S
N -1
b c W d W e W
AL (W/2 +p) Al - B ALG-p) A+ ) (G4)

Tt RORLIEA 0/
WO -E

b

Each pole at wo = E is matched by a pole at WO = ~E. One notices that (5.19) is
invariant under wo + —WO and Q+ <+ 0 . Thus, the residue of the pole at -[ is
given by (G2) with E + -F and 9+ + @_. Although the wave functions CL and ©_
are infrared finite, each residue factor wiﬁ<§,ﬁ> in (G4) contains Z(g,ﬁ) =

204 + E(;,ﬁ). Thus, the effective interaction is of order Az. 1t appears that
(G4) dominates all interactions. However, a bound state couples through gluon
propagators, each of which introduces suppression factors. In addition, loop in-
tegrations which encircle gluon poles force wo « X in the denominator of (G4).
Thus, if (G4} replaces the Coulomb interaction of Figure 7d of the correction
dlagrams considered in Appendix E, there are three loop integrations, four gluon
propagators, and a bound state propagator to produce a gq correction of A°. In
the gluon self energy one finds a Al term, Bound state diagrams are no more
singular than those already considered. 1In addition, the strength of bound state
diagrams is suppressed by color effects. The usual factor of N is missing and
there is a 1/(N2—l) from the color singlet projection operator.

Additional suppression cones froﬁ the coupling in type space. There is a rich
phenomenology associated with the analysis of bound state interactions. A de-

tailed treatment requires solutlons to the bound state equations.
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Figure Captions

Fig. 1. The perturbation series for the Coulomb Green's function is portrayed
in (a). Solid lines are l/p2 propagators and wavy lines are gluons, The
perturbation series 15 re-summed in (b); the'dashed line is the dressed
propagater function D(p). The nature of the integral equation for the
vertex function is shown in (c).

Fig. 2. The order g2 gluon counterterm, marked by a cross in (a), cancels four
diagrams, Only the diagram with the singular Coulomb propagator indicated
by a double dashed line survives the infrared limit. Quark lines are solid,
The quark counterterm equation is shown in (h).

Fig. 3. Numerical solutions of the fundamental equations of the mean field
model are shown as functions of p. The coupling constant in the equa-
tion for F(p) is multiplied by 0.9 to avoid complex scolutlions at p =0.

The logarithms of both D(p) and F(p) are plotted in (a), and the gluon
propagator function A(p) is given in (b). F(p) is constrained by F(1l) =1.
The gquark counterterm functions Gl(p) and Gz(p) are zero on the scale of
(b), except for the highest momenta. The momentum p is measured in units
of a(0)7H

Fig. 4. A representative multi-gluon interaction arising from Vl(A) is shown
in (a); vertices are taken to be points. The broken wavy line represents
a fictitious gluon line. Order g4 and g6 correction to the gluon self
energy appear in (b). A large class of planar diagrams sum in (c} to
produce vertex corrections for the fictitious gluon.

Fig, 5. The anomalous interaction VZ(A) produces seven diagrams which contribute
to the gluon self energy. All have two fictitlious gluons (dashed wavy),
two D(p) propagators (dashed), and a single F(p) (double dashed). Vertex
effects are suppressed. The first three are produced by the first term

in (A3); the second three dome from the second term in (A3). The final

diagram arises from the third term.
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Fig. 6. The one gluon term in the operator product expansion of Dab(g,z;x) is
given in {a) and the two gluon term in (b). In the absencec oflvertex cor-
rections, Fab(gQK;x) has the operator expansion in (c).

Fig. 7. The first correction to a point vertex on a D-type Coulomb line is
shown in (a), while (b) suggests the complexity of higher order vertices.
Subgtitution of (a) into the equation for D(p) requires evaluation of {c¢).
A second correction to D(k} is produced by (d). The double dashed line
is an F{p) propagator, Diagrams (e), (f), (g), and (h) are the g4 correc—
tions to the gluon self energy associated with the two gluon term in the
operator expansion of Fab(;}ﬁ;x). Fach diagram shows one of three posi-
tions for the singular Coulomb line. Diagram (i) is the quark loop term
in the gluon propagator, and (j) and (k) show gluon and quark loop corrcc-
tions to the Coulomb interaction between gluons.

Fig. 8. Two D-type Coulomb lines interact by gluon exchange. The ladder dia-
grams and crossed ladder diagrams are separately summed to produce Bethe-

Salpeter-like wave functions.
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